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Abstract

Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully
colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable
ecosystems on earth. Here, based on a complete dataset of all the world’s diversity of living reptiles, we analyse lineage
taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the
historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles
are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates
(59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras
(0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while
descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular,
have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of
reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed,
with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species,
respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera
Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among
phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then
compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial
differences in the taxonomies (relative to 2012), the patterns of lineage richness remain qualitatively identical, hence
reinforcing our conclusions about the fractal nature of reptile biodiversity.
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Introduction

Reptiles are among the most remarkable components of global

biodiversity. The ecological and evolutionary role of these

organisms has played a primary part in the origin and subsequent

radiations of amniote vertebrates, and in the function of modern-

day ecosystems [1–3]. Evolutionary milestones in reptiles past,

such as the acquisition of water-independent reproduction that

resulted in their establishment as the first fully-terrestrial verte-

brates, and their universally known Mesozoic proliferation

followed by mass extinctions (most notably embodied by

dinosaurs, ichthyosaurs and pterosaurs), are among the most

important events in vertebrate evolutionary history [3,4]. Likewise,

as major components of current biotas globally, reptiles have

successfully invaded most areas of the world, except the poles, and

including the oceans [3,5]. As a result of radiations over hundreds

of millions of years, reptiles have accumulated a vast diversity of

morphological, behavioural, ecological, life history, and defensive

strategies to cope with the selective demands they have encoun-

tered [3,6–10]. These and other features have earned reptiles a

central role as model systems for evolutionary and ecological

research [4,11].

The evolutionary history of reptiles has given rise to consider-

ably asymmetric species-richness among phylogenetic groups.

While turtles, crocodilians and tuataras (non-squamate reptiles)

combined do not reach 350 species (and are, in turn, considerably

asymmetric among themselves), the clade Squamata (lizards,

snakes and amphisbaenians) has diversified into more than 9,100

species [12,13]. These patterns of species richness are, to some

extent, mirrored by order-level geographic range sizes, as both

turtles and crocodilians despite being widespread around the

world, have failed to radiate in cold climates, where some

squamate lineages, in contrast, have successfully proliferated

[3,4,12]. As a result, squamates have consolidated as the most

successful lineage among living reptiles in terms of species richness,

morphological and ecological diversity, and as one of the most

successful orders among terrestrial vertebrates in general. Indeed,

some of the most remarkable examples of vertebrate evolutionary

radiations have occurred within squamates. Particularly notorious

cases are the hyperdiverse iguanian genera Anolis, within which

nearly 400 species are known from tropical America [11,13], and

Liolaemus, consisting of 220+ species occurring across one of the

widest climatic and ecological ranges known among living reptiles

[14,15]. These two lizard genera are the most species-rich among

amniote vertebrates on earth. It is worth noting, however, that

several authors [16,17] have suggested splitting of Anolis into

multiple genera.
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These asymmetries in taxonomic richness among reptile clades

reflect major differences in the evolutionary dynamics that

underlie the way lineages radiate and go extinct [18,19]. For

example, the antagonistic effects of evolvability (the capacity of

organisms to adapt to changing environments) and genetic

constraints (tendency for phylogenetic niche conservatism) on the

potential of clades to radiate and proliferate, or the roles that key

innovations play in the tempo of lineage diversification [20–23]

and extinction [24]. For these reasons, an understanding of the

phylogenetic distribution of species richness within major groups

of organisms can have, in turn, profound implications for

understanding the way biodiversity evolves [25]. However, studies

aimed to explore patterns of taxonomic diversity among entire

lineages (e.g., reptiles) must meet the challenge of having a

comprehensive account of the species known within each clade.

Multiple attempts have been made to assemble global datasets of

amphibians, birds and mammals, from which a number of

patterns of diversity have been shown (e.g., [26–28]). In contrast,

such global-scale analyses are almost entirely lacking for reptiles.

Some studies, for instance, have concentrated on particular

groups, e.g., lizards [29] or turtles [30]. For reptiles in general,

only a brief account of their patterns of species richness was

presented more than a decade ago by Uetz [12]. However, by then

the total number of known species was considerably lower than it

is today (,80% of current diversity; see results and [31]), and

phylogenetic relationships among and within major lineages were

poorly resolved and based on much more restricted datasets than

currently available. In a more recent study, Ricklefs et al. [25]

investigated the phylogenetic patterns of diversity among 36 clades

(at subfamily level) of squamate reptiles. These authors revealed a

general tendency for exceptionally rich clades to be rare, while

smaller clades to be the norm. More generally, previous studies

have suggested that the structural organization of biodiversity at

different taxonomic levels is fundamentally fractal (i.e., scale

invariant) [32]. However, whether this pattern of diversity

distribution is consistent among reptiles in general, and among

phylogenetic levels of taxonomic hierarchy, i.e., whether this

pattern of diversity is fractal, remains unknown.

Here, we investigate the patterns of reptile lineage taxonomic

diversity both within and among clades, at different levels of the

phylogenetic hierarchy, based on a comprehensive dataset of all

living reptile species described and considered valid until March

2012. These data are currently compiled in the Reptile Database

[13]. In addition, we complement these analyses with an

examination of the historical rates of reptile species descriptions

in the scientific literature from Linnaeus [33] to 2012.

Results

Patterns of Species Descriptions
The world’s known diversity of living reptiles has reached 9,546

species at the time of this analyses (March 2012), of which 25

(0.3%) are crocodilians, 327 (3.4%) are turtles, and one (0.01%) is

the tuatara [34]. The remaining 9,193 (96.3%) species are

squamates (lizards, snakes and amphisbaenians) (Table 1; Fig. 1).

Within squamates, most diversity is concentrated in the para-

phyletic suborder Sauria (lizards – 5,634 species) and in the

monophyletic suborder Serpentes (snakes – 3,378 species), whereas

only 181 species are amphisbaenians (suborder Amphisbaenia).

Compared with the account presented 12 years ago by Uetz [12],

these species counts represent increases of 32 species (10.8%

increase) of turtles, and two crocodilians (8.7% increase) [35,36],

whereas the taxonomic richness of tuataras has declined from two

to one as a result of recent genetic evidence [34]. Among

squamates, a remarkable 1,647 (21.8% increase) species were

added during this period, of which 1,164 species are lizards (26%

increase), 458 species are snakes (15.7% increase), and 25 species

are amphisbaenians (16% increase). Collectively, thus, the entire

known diversity of living reptiles (based on species descriptions

considered valid) has increased by 1,680 species (21.4% increase)

since 2000. These differences in richness represent a rate of

increase of 1.6% per year for reptiles in general, 1.7% for

squamates, and 1.9% per year for lizards.

Historically, the rates of new species descriptions have been

highly asymmetric among time periods, and among major reptile

groups (Fig. 2). Given that most reptiles are squamates, the

historical trends found in squamates and reptiles in general are

almost identical. The description rates of crocodilians and turtles

were considerably higher during the first half of the 19th century,

followed by conspicuous declines. Descriptions of lizards and

snakes (and hence, of squamates together), on the other hand, have

peaked in different historical periods. While three peaks standout

in the history of snakes, two main periods of lizard descriptions are

seen (with an additional early weak peak), as Linnaeus named

many more snakes than lizards (Fig. 2). The description rates of

new lizard species have increased dramatically during the 21st

century to an unprecedented level compared to any reptile group

at this period. For snakes, the highest proportion of species was

described during the 1850s and 1860s, although the numbers of

descriptions have increased in the last two decades as well. The

historical tendency for descriptions of amphisbaenians is clearly

more similar to the historical rates of lizards (Fig. 2). Interestingly,

a sharp decline in reptile species descriptions, especially in lizards

and snakes, occurred between approximately the 1940s and the

1970s (Fig. 2). Overall, the last five years have seen the highest

description rates of reptiles ever [31]. The year 2012 will surely

enter the list, as, at the time of writing, .160 new species were

already described (126 of which are lizards, the highest figure ever,

and nearly all the rest are snakes).The cumulative curves of

species-richness remain similar among all reptile groups, except for

crocodilians, in which the curve has plateaued late in the 19th

century following a peak of species descriptions between 1800–

1825, when more than half of all species were described (Fig. 2).

Taxonomic Imbalance
Analyses of the frequency distributions of reptile richness within

major taxa consistently reveal strong, significant, right-skewed

distributions (genera within families: Skewness = 5.5, SE = 0.27,

test (Shapiro-Wilks) = 0.38 (82 df), P,0.0001; species within

genera: Skewness = 4.5, SE = 0.27, test = 0.43 (82 df), P,0.0001;

species within genera: Skewness = 9.7, SE = 0.07, test = 0.35

(1131 df), P,0.0001; tests for reptile orders reveal qualitatively

identical results). Thus, most families and genera consist of few

genera and species, respectively, while very rich lineages are rare

(Fig. 3). This distribution of diversity remains constant for all

reptiles together, for different reptilian taxa separately, and when

these analyses are conducted both for numbers of species within

genera and for the numbers of genera within families (Fig. 3).

Therefore, this organization of reptile diversity is not affected by

taxon (species, genera) richness. In addition, the number of species

per genus in a family is not predicted by the number of genera per

family (Fig. 4A). However, the number of genera is positively

correlated with the number of species per family in all major

reptile groups (Lizards: R2 = 0.61, F1,32 = 50.82, P,0.0001; snakes:

R2 = 0.87, F1,21 = 137.5, P,0.0001; amphisbaenians: R2 = 0.81,

F1,4 = 16.77, P = 0.01; turtles: R2 = 0.86, F1,12 = 76.1, P,0.0001;

Fig. 4B). In line with these observations, a further analysis shows

that 50% of the world’s reptile species diversity is accounted for by
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only 93 genera (8.2% of all reptile genera, all of them squamates),

whereas the remaining 50% of the species are spread across the

other 1,038 genera (Fig. 5). Indeed, the ten richest reptile genera

(0.9% of the total 1,131 genera) contain 1,553 species in total,

which represents 16.3% of global reptile biodiversity.

Discussion

The Distribution of Richness in Reptile Taxa
Reptiles, with 9,546 species (and ,2,800 subspecies), are the

second richest class of tetrapods – close to the ,10,600 known

species (and ,12,000 subspecies) of birds [37], and substantially

more diverse than the ,6,770 species of amphibians [38], and the

,5,400 species of mammals [39,40]. Most reptile diversity is

concentrated in the hyper-diverse clade Squamata (Fig. 1), within

which a 98% of the diversity is concentrated in lizards (a

paraphyletic grouping) and snakes. Therefore, the high diversity of

Squamata is mostly responsible for the prominent global

biodiversity of reptiles as a whole.

Our observations reveal that historical rates of newly described

species for the three squamate groups separately are clearly similar

(multimodal), while these rates differ importantly from those found

in turtles and crocodilians (Fig. 2). Hence, the intrinsic species-

richness of clades is not a consistent predictor of description rates

as turtles are more species rich than amphisbaenians, yet this latter

clade of squamates exhibits similar rates to the other two,

extremely rich, squamate groups (Fig. 2). Indeed, it is interesting

to note that the rates of species descriptions of amphisbaenians

have increased importantly over the last three decades. This

suggests that a more intense search for secretive species coupled

with modern techniques for taxonomic inference (e.g., molecular

systematics) may reveal new species of amphisbaenians that may

have remained unappreciated. Overall, it can be speculated that

the large range-size and large body size of turtles and crocodilians

may have resulted in rapid and early discovery and description of

most species, while new lizard and snake species (and, potentially,

amphisbaenians) continue to be reported at high rates given their

high intrinsic diversity (except for amphisbaenians), which seems

to be related to small body size and small geographic ranges (see

e.g., [29,41,42]). On the other hand, the historical tendencies of

the accumulation of species richness are remarkably similar among

all groups except crocodilians, in which the curve has plateaued

after an active period of species descriptions early in the 19th

century (Fig. 2).

The Nature of Reptile Biodiversity
The analyses of lineage diversity conducted on our global

dataset reveals a qualitatively similar and strong tendency for right

skewed frequency distributions of lineage richness, where most

groups consist of a few lineages (Fig. 3). Interestingly, these

richness distributions are consistent both among major clades and

across different hierarchical levels in the reptile phylogeny. Thus,

our results show that reptiles in general, and major groups within

reptiles separately, mostly contain genera with only few species,

and most families have few genera (see also [25]). This means that

extremely diverse lineages are rare, yet, represent major contri-

butions to the total diversity of the group [25,32]. In fact, as shown

earlier in this paper, the ten richest reptile genera contain 1,553

species in total (16.3% of global reptile diversity; see also Fig. 5).

Therefore, the existence of this constant pattern of across-clade

and across-taxonomic scale diversity is not only consistent with

similar patterns observed in other organisms [32,43,44], but also

supports the prediction that biodiversity in reptiles is fractal [32]

(i.e., the organization of diversity is scale-invariant, and hence,

remains similar at different taxonomic levels).

An important implication of these findings is that the total

species richness of reptile families is caused by the disparate

diversity of only a few genera. The rarity of exceptionally species-

rich taxa suggests that a number of organismal and environmental

conditions have to be met to initiate and maintain such high rates

of evolutionary proliferation. Adaptive radiation theory posits that

prominent radiations require both innovative traits (‘key innova-

tions’) that allow the exploitation of resources in novel ways

[19,45,46], and the existence of available resources to be exploited

in the first place to consolidate a new niche for a newly forming

species [45,47]. When no niches are available, diversification rates

are expected to decline as a result of density-dependent effects due

to saturation of ecological opportunity [48]. Globally, only a few

reptile lineages have met these conditions in unusually favourable

combinations. Most notably, the two richest reptile genera, Anolis

and Liolaemus, have evolutionarily outperformed all other reptile

Figure 1. Phylogenetic distribution of genera and species diversity among currently known families of living reptiles. The six major
reptile groups are differentiated in colours, as detailed in the top-right box. The lizard families Dibamidae and Hopolcercidae, and the amphisbaenian
families Cadeidae and Rhineuridae are not shown because of conflicting phylogenetic information. Birds and other vertebrates have been excluded
from the tree.
doi:10.1371/journal.pone.0059741.g001

Table 1. Summary of family, genera and species diversity of world’s reptiles.

Group Number of Families Number of Genera Number of Species

Reptiles 82 1,131 9,546

Turtles 14 93 327

Crocodilians 3 9 25

Tuataras 1 1 1

Squamata 64 1,028 9,193

Lizards 35 498 5,634

Snakes 23 511 3,378

Amphisbaenians 6 19 181

For convenience, reptiles in general and Squamata (lizards, snakes and amphisbaenians) lineage richness are shown separately.
doi:10.1371/journal.pone.0059741.t001

Global Reptile Biodiversity

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e59741



Global Reptile Biodiversity

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e59741



(and even amniote) genera in terms of species diversity (Table 2). It

should be noted, however, that the split of Anolis into multiple

genera has previously been suggested in multiple papers [16,17],

and hence, according to these views the family Dactyloidae

consists of eight, rather than one, genera. Anoles, on the one hand,

appear to have accessed a variety of novel niches by acquiring

subdigital toepads that facilitated unprecedented exploitation of

arboreal microhabitats, while reinforcing speciation rates via

dewlap-based communication [11]. The Liolaemus radiation, on the

other hand, is likely to have been promoted by the uplift of the

Andes, which opened enormous ecological opportunities to be

exploited [24], accompanied by the subsequent colonization of

Patagonia (possibly facilitated by the Andean bridge itself). Indeed,

the uplift of the Andes has increasingly been implicated in the

proliferation of high biodiversity in other organisms [49–51]. The

access to such ecological opportunities appears to have been

facilitated by the adaptive potential of Liolaemus to exploit all

possible structural and thermal microhabitats [15,52–55], food

resources [56], and to evolve alternative life history strategies to

reproduce efficiently across extreme climatic gradients [57,58]. As

a result, Liolaemus species are the dominant (and in extreme

elevations and latitudes, sometimes the only) reptiles in most areas

of their distribution [14,15,59–61]. In Liolaemus, the identification

of underlying key innovations remains less clear, although multiple

independent episodes of evolution of viviparity have apparently

opened multiple opportunities to colonize cold climates [24]. It

remains unclear whether the ages of the Anolis and Liolaemus

radiations are linked to their current differences in diversity,

although the Liolaemus radiation seems to be considerably younger

than Anolis. While estimates suggest that Anolis may have radiated

for at least 60+ My [11,16], Liolaemus is estimated to have radiated

for 20+ My [62,63]. Interestingly, the highly diverse gecko genus

Cyrtodactylus has also been estimated to have originated about 60

My ago [64], which reinforces the idea that the Liolaemus radiation

has been remarkably rapid. However, in general, these estimates

have large margins of error and overlap to certain extent [11],

which makes difficult to fully appreciate the temporal asymmetries

behind the radiations of these lineages.

The phylogeny of global reptiles is fast advancing with multiple

recent studies enabling a deeper understanding of both the

relationships among major clades [65,66] and within species-rich

lineages [64]. However, a well-resolved, dated, species-level reptile

phylogeny remains unavailable. Several rich groups with high

potential as model organisms, such as Liolaemus for example,

require substantial further efforts to achieve even nearly complete

phylogenies. As such reptile phylogenies become available, more

comprehensive and sophisticated tests of central hypotheses on

reptile diversification and extinctions (and thus their combined

contribution to the evolution of biodiversity) will be possible, to

ultimately strengthen conclusions on the mechanisms and

processes underlying the history, present and future of these

vertebrates.

Discrete Linnaean Categories and Darwin’s Tree of Life
Modern evolutionary biology reconciles Linnaeus’s [33] taxo-

nomic system with Darwin’s [67] evolutionary tree of life under

the view that biodiversity proliferates through the split of ancestors

into (at least largely) genetically isolated categories [68–70].

However, these two views of nature sometimes conflict [71],

mostly because the conceptual basis of both ideas differs

Figure 2. Historical rates of reptile species descriptions (dots) and rate of accumulation of new species (continuous line) since
Linnaeus (1758), to the most recent species appeared to March 2012. The two top plots show rates for reptiles as a whole and for the
squamate clade, respectively, while the remaining ones focus on major reptile groups. The tuatara is not shown given the single-species richness of
the order Rhynchocephalia. The time scale shown in the bottom plots is identical to the timescales of the plots above them.
doi:10.1371/journal.pone.0059741.g002

Figure 3. Frequency distributions of reptile biodiversity. The left plot depicts the overall frequency distribution of species per genera for all
reptiles together, and the distributions for major clades separately (tuataras and amphisbaenians not shown) in the inset plots. For lizards and reptiles
in general, the genera Anolis (A) and Liolaemus (L), and for snakes Atractus (At) and Typhlops (T) are indicated with black arrows. The right plots depict
the same distributions, but for genera within families. Crocodilians and tuataras are not shown given the low number of families and genera.
doi:10.1371/journal.pone.0059741.g003
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importantly as Linnaeus’s system was established before organisms

were described as a phylogenetic continuum under Darwin’s

theory of descent with modification. Therefore, the application of

taxonomic categories necessarily relies on arbitrary decisions on

where the boundaries of these groups are, even if dealing with

monophyletic groups only. Such arbitrariness inevitably dictates

the direction of results. Hence, taxonomic rearrangements can

alter the current shape of lineage diversity distributions. In order to

test for such uncertainties, we have used the Reptile Database to

identify the 7,145 reptile species that had been described by 1980,

a time when taxonomy was primarily based on morphological

traits. The number of genera considered valid in 1980 was similar

to today’s (Fig. 5), and although the total number of species was

considerably different, the overall frequency distribution is

fundamentally the same (Fig. 5). However, there has clearly been

a trend towards splitting during the past three decades, not the

least because many groups have been shown to be polyphyletic.

For instance, most Palearctic green lizards were then considered

members of the genus Lacerta, which has subsequently been split

into multiple genera [72]. Similar taxonomic splits into multiple

smaller genera have been suggested for the richest reptilian genera

(e.g., [14,17]), including the recent split of Anolis [16], as well as for

many other reptilian taxa (e.g., [73]). Given the large influence of

only a few unusually rich clades on the frequency distributions of

taxonomic richness in reptiles (Fig. 3), which are at the same time

the clades more likely to be split up, the arbitrariness of Linnaean

taxonomic practice can often alter the perceptions of biodiversity if

based on taxonomy. Clearly, these limitations will remain

prevalent until a more objective, phylogenetic based system of

organismal classification is generally employed.

Materials and Methods

Data Sources
Our study relies on a complete dataset covering the entire global

diversity of living reptiles known to March 2012, which has been

Figure 4. Species richness in reptilian taxa. Overall, the number of species per genus in a family is not directly correlated with the number of
genera per family (A). However, the number of genera is proportional to the number of species per family in all major reptile groups (B). Each data
point represents a family.
doi:10.1371/journal.pone.0059741.g004

Figure 5. Distribution of the world’s reptile species as the accumulation of relative diversity from the richest (Anolis) to the poorest
genera based on a 2012 and a 1980 dataset (main plot). The 2012 relationship reveals that 50% of global reptile diversity is accounted for by
the 93 richest genera only, all of them squamates, and 92 being lizards and snakes. The inset plot displays the accumulation of species for both
datasets as absolute species numbers per genera. Anolis is treated as a single large genus (see text for details).
doi:10.1371/journal.pone.0059741.g005
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taken from the online Reptile Database [13]. The database is the

repository of the data which we employed to identify lineage

richness at different phylogenetic levels, from total reptile diversity

to species richness per genus. We ignored subspecies, and hence,

our reported results are entirely based on taxa with currently

accepted full-species status.

Phylogeny and Taxonomic Richness
The phylogenetic organization of the data was based on a

composite family-level tree encompassing the entire class Reptilia,

which we assembled from recent phylogenetic hypotheses

presented for lizards in general [74], snakes [75], turtles [76,77]

and crocodilians [3,78]. The phylogenetic relationships among

these major groups have been reported in a number of other

studies (e.g., [3,79–82]). Among these phylogenetic-based taxo-

nomic decisions, we follow Townsend et al.’s [83] recent

proposition to separate the paraphyletic family Polychrotidae into

Polychrotidae for the genus Polychrus, and Dactyloidae for the

genus Anolis (see Fig. 1). However, given that the separation of the

genus Anolis into eight different genera requires further validation,

we comply to the traditional view that maintains these genera

names under Anolis [11,16]. These data were employed to conduct

analyses of distribution of lineage (including species) richness

within and among clades. A general picture of the richness

distribution of diversity along the reptilian phylogeny is presented

in Figure 1. We then plotted the frequency distributions of species

within genera, and of genera within families, across all reptiles,

and separately for each major group to show among-group

contrasts, at different phylogenetic scales (e.g., Fig. 3).

Species Descriptions
To reconstruct the historical patterns of frequency in new

species descriptions (from 1758, which includes the first species

named by Linnaeus, to 2012), we obtained the year of publication

of all currently recognized reptile species. Therefore, names

currently recognized as junior synonyms in the Reptile Database

[13] have been ignored. We plotted historical trends of species

descriptions for all reptiles, and then separately for each major

reptile group (Fig. 2). These analyses substantially expand the

general overview (for reptiles as a whole) previously presented by

Uetz [31]. The species taxonomic diversity as of 1980 (used for

Fig. 5) was compiled from the historical (or synonymy) records of

the Reptile Database. The names used in 1980 or the most

recently used names before 1980 were used as the 1980 names for

genera. For instance, the genus Rhinotyphlops contained 22 species

in 1980 while it contains only four species today after having been

split up into multiple genera such as Letheobia and others. While the

incompleteness of the synonymy most likely has caused some

inconsistencies, the overall pattern of species richness of genera

(Fig. 5) appears to be unaffected.
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