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Abstract

Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide
insights into future consequences under changing environments. Evidence suggests that climate warming exerts major
damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking
historical niches is more limited. Species with longer generations (slower adaptive responses), such as vertebrates, and with
restricted distributions (lower genetic diversity, higher inbreeding) in these environments are expected to be particularly
threatened by warming crises. However, a well-known macroecological generalization (Rapoport’s rule) predicts that
species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I
investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the
prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not
elevational) ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size.
Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size
evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by
theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at
high latitudes and elevations.
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Introduction

The dynamics of species geographic range-size evolution are

mediated by ecological, physiological and physical factors that set

the boundaries for viable dispersal [1,2,3]. As a result, most species

have ranges restricted to particular areas of the planet, and most

are restricted to particular environmental spots where even local

habitat fragmentations prevent dynamic migration between them

[4]. Multiple hypotheses have attempted to elucidate the causes,

and hence the predictability, of current patterns of range-sizes in

nature under the context of different organismal and environ-

mental factors [5]. However, despite decades of research, the

search for general explanations underlying range-size variation

remains a challenging endeavour [1,5].

Research on the ecological and evolutionary dynamics of range

limits has become increasingly important with the observation that

species distributions are rapidly altered by human-induced climate

change. In recent years, numerous reports have shown ongoing

range alterations across diverse organisms consistent with climate

change predictions [1,3,6,7,8,9,10,11,12,13]. For example, climate

change-driven range alterations have been shown in groups as

diverse as butterflies [9,13], frogs [14,15], and birds [16]. As

predicted, these range alterations have been involved in popula-

tion declines or in actual extinctions in species where adaptive

responses to environmental changes or dispersal into new areas

have been obstructed by genetic or physical barriers

[6,8,9,10,17,18]. The potential for threatened species to escape

extinction following rapid climatic shifts depends on multiple

biological features. For example, rapid adaptive responses to

climate change are more likely in species with short generation

times, such as insects [19,20], but appear less likely in longer-

generation organisms, such as vertebrates [17,21,22]. Also, species

distributed at high latitudes and elevations are expected to

experience threats as range alterations caused by upward and

poleward advances of warming climate may cause range

contractions while available space to disperse tracking histo-

rical niches progressively declines, such as on mountaintops

[8,10,12,23,24,25]. Subsequently, range contractions and frag-

mentations may compromise population persistence via reduced

genetic diversity [4]. Warming will also promote dispersal of

species from warm areas that may compete with resident species

from historically cold areas, intensifying environmental stress,

population damage, and extinction ([6,22,23], but see [26]).

Therefore, species with longer generations from high latitudes and

elevations and with restricted range-sizes are expected to become

particularly threatened under persisting climate warming.

In this context, the macroecological study of spatial variation of

geographic range-sizes across environmental gradients is of

primary interest to infer factors involved in the evolution of their

boundaries, and hence, to reinforce predictions about potential
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large-scale responses to changing climates. Particularly, although

cold climate species with restricted ranges are expected to be more

threatened by climate warming, a widely known macroecological

generalization (known as Rapoport’s rule) posits that species

range-sizes tend to increase with decreasing climatic temperatures

along biogeographical gradients [27,28,29]. Therefore, in lineages

where this trend holds, larger ranges toward higher latitudes-

elevations may contribute to counterbalance the impact of climate

warming, potentially retarding range contractions and extinctions.

However, empirical support to this rule is equivocal, being

increasingly discredited as a generality [29].

The use of prominent adaptive radiations offers excellent

conditions to investigate within the phylogenetic boundaries of a

given lineage (where evolutionary events are related and compara-

ble) the impact of factors expected to affect the trajectories of

ecological and evolutionary processes, such as range-size variation.

Here, I investigate the questions whether range-sizes among species

of the prominent Liolaemus (family Liolaemidae) lizard adaptive

radiation vary predictably across one of the most extreme

environmental gradients known for a single lizard genus, and

whether this variation would most likely enhance or counterbalance

potential threats under persistent climate change (i.e. whether range-

sizes increase or decrease with latitude-elevation). In addition, I

investigate whether range-sizes are influenced by interspecific

differences in body size, as suggested by previous studies. However,

the direction of these relationships is inconsistent. While some studies

reveal that larger ranges result from higher ecological tolerance and

competitiveness of larger species [1,30,31,32,33,34], others show

both positive or negative covariations [35], or even triangular

relationships [1]. The Liolaemus radiation provides an ideal model

organism to address these questions. Consisting of 220+ species,

these lizards have extensively radiated throughout central and

southern South America and have colonized a unique variety of

environments [36], occurring from the extreme Desert of Atacama

to Patagonian areas that include the southernmost place inhabited

by lizards, and from sea level to over 5000 m of elevation

[37,38,39,40]. Across this environmental gradient, Liolaemus species

have evolved a diversity of range-sizes, life histories and thermal

adaptations [38,41,42,43,44] that offer the ideal evolutionary

scenario to conduct large-scale comparative analyses within a single

radiation.

Results

The range-size frequency-distributions on arithmetic scales in

Liolaemus are consistently right-skewed in both latitudinal and

elevational ranges (Kolmogorov-Smirnov test, latitudinal range:

D(121) = 0.22, P,0.001; elevational range: D(121) = 0.11, P = 0.002;

Fig. 1b, c), and hence, the tendency within the genus is towards

geographically restricted species, with some examples of extreme

historical dispersal ability. In contrast, the frequency-distribution of

the ALM is left-skewed (Fig. 1a). As shown by these frequency-

distribution plots, both latitudinal (range mean = 02u589S63.8 SD,

range = 0u019S–23u339S, mode = 0u069S) and elevational ranges

(range mean = 10116691 m, range = 20–3153 m, mode = 300 m)

show considerable interspecific variation. Logarithmic transforma-

tions (ln) of arithmetic frequency distributions of latitudinal and

elevational ranges reduced skewness, but failed to reach normality

(latitudinal range: D(121) = 0.12, P,0.001; elevational range:

D(121) = 0.09, P = 0.01; Fig. 1b’, c’).

Quantitative analyses of range-size variation revealed qualitatively

identical results when employing both conventional statistics and

phylogenetic comparative methods (Table 1), which suggests a

substantial consistency between predictors and range-size independent

of the analytical approach employed. This finding contrasts with a

previous similar study in Liolaemus lizards based on a smaller sample

[42] where results from both conventional and phylogenetic analyses

differed significantly. The test of the primary question whether range-

sizes vary predictably across an environmental and geographical

Figure 1. Frequency distributions of geographic locations of
Liolaemus species expressed as a combination of latitude and
elevation under the adjusted latitudinal midpoint (ALM, a),
and of their latitudinal (expressed in degrees of latitude, b)
and elevational (expressed in metres of elevation, c) geo-
graphical range sizes expressed in arithmetic scales, and in
their corresponding logarithmic scales (b’ for latitude, c’ for
elevation).
doi:10.1371/journal.pone.0028942.g001

Range-Size Evolution in a Lizard Radiation
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gradient revealed that latitudinal range-sizes decrease predictably with

increasing latitude-elevation (ALM), and hence, with decreasing

climatic temperatures (Table 1; Fig. 2c,d). Also, figure 2c shows that

the magnitude of residuals below the fit line is greater than above it,

and hence, latitudinal range-sizes deviate more strongly towards

smaller ranges than expected than the deviations towards larger

ranges than expected. However, a weak, non-significant, relationship

was detected between ALM and elevational range-size (Table 1; figure

not shown), despite the significant positive correlation between

latitudinal and elevational range-sizes (Table 1; Fig. 2a,b). Analyses

involving body size showed that the historical dispersal ability of

Liolaemus species appears to be unrelated to average species size, as no

predictable covariation was observed (Table 1). When differences in

body size between the sexes were accounted for, similar relationships

were observed between body size and range-size variation (Table 1).

These results are also entirely consistent between conventional and

phylogenetic analyses (Table 1).

Discussion

This study provides evidence that latitudinal range-sizes in

Liolaemus lizards decrease predictably with increasing latitude-

elevation across an extreme environmental gradient. Hence, these

observations entirely reverse the pattern predicted by Rapoport’s

rule [28,29], while no effects of distribution were observed on

elevational range-sizes. The phylogenetic analyses revealed the

same relationship. These results contrast with a previous study on

a smaller sample of Liolaemus species, where non-historical analyses

revealed a positive relationship between latitudinal range-size and

species latitudinal and elevational distributions, while phylogenetic

tests showed no association between these variables [42]. In

addition, I found that body size appears not to influence range-size

variation in these lizards. Collectively, these results suggest an

historical connection between the radiation of Liolaemus lizards into

cold-climate environments and their dispersal potential, and that

the evolutionary outcome of decreasing ranges with increasing

latitude-elevation may result in higher levels of population

vulnerability and potentially extinction in colder climate species,

as a result of range contractions if upward and poleward climate

warming persists.

Evolutionary inference and ecological expectations of
range-size dynamics

The observed relationships between range-size and environ-

mental gradients can be interpreted from, first, an evolutionary

perspective, and second, an ecological perspective involving

potential consequences of climate warming. Evolutionarily, these

results suggest that the historical dynamics of latitudinal range

limits have been influenced significantly by the environmental

conditions encountered by Liolaemus during their radiations into

high latitudes and elevations, where the increasingly colder and

unstable climatic conditions stand as primary candidate factors.

However, given that only latitudinal ranges predictably decrease as

a function of increasing ALM, in contrast to elevational ranges

(Table 1), range limits are unlikely to be restricted by thermo-

physiological demands of colder climates alone. This inference is

supported by a previous study where thermal tolerance was shown

to increase with increasing latitudes-elevations across Liolaemus

species [42], in agreement with theory [45] and additional

empirical evidence coming from other ectotherms [46,47]. If

range dispersal relied exclusively on thermophysiology, it would be

expected that given greater thermal tolerance in colder climates,

latitudinal ranges would not be restricted by declining climatic

temperatures (as observed in elevational ranges), in contrast to the

results of this paper. Therefore, this suggests that additional factors

associated with higher ALMs play an important role in shaping

range-size variation in these lizards (e.g., [1,48]). In the case of

cold climate Liolaemus species, range boundaries are known to be

influenced by the irregular topography of the Andes, characterized

by multiple mountain peaks spread across thousands of kilometres

of latitude, and where an important part of this evolutionary

radiation has taken place [38,43,49]. This topographical scenario

then imposes severe physical barriers for latitudinal dispersal,

while elevational dispersal would not be equally restricted within

mountains, which would be further facilitated by greater thermal

tolerance. However, the fact that latitudinal ranges are affected by

Andean topography necessarily indicates that elevational dispersal

is possible only within certain limits. Otherwise, there would be no

limits to latitudinal distribution. Indeed, several Andean Liolaemus

species are restricted to ‘elevational islands’ (as observed in other

mountain lizards; e.g. [22]) represented by high elevation zones

isolated by lower elevation valleys and cliffs from similar high

elevation peaks where related species occur (e.g., [50,51]).

Therefore, species dispersal between high elevation areas through

lower elevation corridors appears, in fact, to be impeded.

Despite greater thermal tolerance of cold-climate Liolaemus,

mountain restrictions may be explained by at least three

evolutionary scenarios that potentially apply for cold-climate

lizards in general. First, the evolution of increasing thermal

Table 1. Conventional (non-phylogenetic, abbreviated as NP)
and phylogenetic (based on phylogenetic independent
contrasts, abbreviated as PIC) analyses of large-scale patterns
of latitudinal (Lat) and elevational (Elev) range size variation as
a function of geographical distribution (adjusted latitudinal
midpoint, ALM) and body size (SVL; for two of these tests the
effect of sexual size dimorphism, SSD, is controlled for) in the
lizard genus Liolaemus.

Analysis Test N r R2 F (df) P

Range (Elev) on
Range (Lat)

NP 121 0.36 – – ,0.001

PIC 68 0.29 – – 0.02

Range (Lat)
on ALM

NP 121 20.21 0.04 5.42 (1,119) 0.02

PIC 68 20.35 0.12 9.02 (1,66) ,0.01

Range (Elev)
on ALM

NP 121 0.15 0.02 2.80 (1,119) 0.1

PIC 68 0.17 0.03 1.97 (1,66) 0.17

Range (Lat)
on SVL

NP 115 20.04 0.002 0.18 (1,113) 0.67

PIC 65 0.05 0.002 0.13 (1,63) 0.72

Range (Elev)
on SVL

NP 115 0.08 0.01 0.68 (1,113) 0.41

PIC 65 0.2 0.04 2.57(1,63) 0.11

Range (Lat) on
SVL (SSD)

NP 115 20.07 0.01 0.31 (2,112) 0.74

PIC 65 0.2 0.04 1.13 (2,62) 0.33

Range (Elev) on
SVL (SSD)

NP 115 0.08 0.01 0.34 (2,112) 0.71

PIC 65 0.2 0.04 1.27 (2,62) 0.29

Relationships between latitudinal and elevational ranges are analysed using
correlations as no causal weight can be attributed to any of these variables. See
methods section for additional details.
doi:10.1371/journal.pone.0028942.t001

Range-Size Evolution in a Lizard Radiation
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tolerance in colder climate species might only be possible within a

narrow range (e.g., [41]), allowing elevational dispersal within

similarly narrow thermal limits. Second, dispersal can be impeded,

independent of thermal selection, if phylogenetic niche conserva-

tism precludes lizard emigrations from elevationally restricted

environmental patches even in the absence of geographical

barriers for range expansion (e.g., [2]). For example, isolated

vegetational areas determined by climatic conditions [52,53]

associated to particular geological formations, such as rocky

outcrops, sustain different Liolaemus species and assemblages in

different areas of the Andes (see also [22,51,54]). Third,

independent of climatic constraints on thermoregulation for

ecological and reproductive activities, the evolution of viviparity

in cold climates can hamper lizard dispersal along elevational

gradients. The detrimental effects that cold and unstable

environments exert on externally incubating eggs has forced cold

climate lizards in general [55], including Liolaemus [43], to evolve

viviparity. Given that viviparity is tremendously costly in warm

environments, and hence mostly viable only in cold climates [55],

and almost entirely impeded to re-evolve into oviparity [55,56],

the evolution of viviparity can be regarded as a major factor

precluding expansion of cold climate lizards into warmer

environments, such as downward dispersal in mountains to access

lower elevation corridors. In accordance with this alternative,

almost all known cases of viviparous Liolaemus species are restricted

to high latitudes-elevations [36,43].

Figure 2. Analyses of range size variation in Liolaemus lizards, showing correlations between latitudinal and elevational ranges
based on conventional (a) and phylogenetic analyses (b), and regression analyses of latitudinal range variation as a function of
adjusted latitudinal midpoint (ALM) in both raw (c) and phylogenetically controlled data (d). Abbreviations include latitude (Lat),
elevation (Elev), and phylogenetic independent contrasts (PIC).
doi:10.1371/journal.pone.0028942.g002
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Although the independent or combined effect of the above

factors may provide an explanation for the observed patterns of

distributional range variation among Andean Liolaemus, it may

not fully explain the occurrence of small ranges among several

Patagonian species, where climates are cold given the high

latitudes, but the Andes decrease considerably in elevation [57].

Therefore, in these cold latitudes, low temperatures are constant

across extensive, flat, areas with considerably less topographic

complexities and environmental fluctuations compared to the

Andes. Yet, as in the Andes, some Patagonian Liolaemus are

isolated in mesetas (trap basalts of up to 1,700 m of elevation), but

these mesetas are unlikely to impose severe restrictions for

dispersal as a generality. For example, while some Patagonian

species are isolated on elevated mesetas (e.g. L. archeforus and L.

silvanae), other species (e.g. L. lineomaculatus) are geographically

widespread, and coexist in different areas of their distribution with

other Liolaemus restricted to smaller ranges [39,58]. However,

despite these differences between Andean and Patagonian

ecosystems, some of the three scenarios detailed above may at

least in part account for the restricted distribution of lizards in

Patagonia. For example, rock-specialist Liolaemus may be forced to

remain in bouldery areas, as observed in Phymaturus lizards (sister

genus to Liolaemus) in Patagonia [59,60].

On the other hand, ecologically, these results may be of

conservation concern as the observed negative relationship between

latitudinal range and ALM suggests that cold climate Liolaemus may

be at higher risk of population decline under persisting climate

change via range retractions and contractions [3] and habitat

fragmentation [61]. Empirical studies have repeatedly shown that

climate warming exerts particularly severe negative impacts on

species from high latitude-elevations [4,7,8,24,25,62,63], often

characterized by hotspots of high endemism [12,64]. Indeed, in a

number of lineages, range-restricted species from high latitudes-

elevations are currently experiencing dramatic fragmentation,

range retractions and contractions that translate into rapid

extinction rates [4,8,10,15]. Liolaemus biodiversity may face

increasing extinction risks through different processes linked to

persisting climate warming. First, assuming some dispersal ability, as

species move upward and poleward tracking their historical niches

as a result of warming advances in the same direction, dispersal can

be impeded by declines in the quality and quantity of available

space [8,10]. Although upward and poleward range expansions

may counterbalance range retractions at the lowest latitudinal and

elevational distributional limits (where range retractions take place),

dispersal might be particularly hampered in species from high

Andean elevations and extreme Patagonian latitudes, where

mountaintops and coastlines set absolute limits on dispersal. Second,

persisting range retractions are expected to increase habitat

fragmentation, thus increasing risks of population declines caused

by genetic crises with high fitness costs, for example via increased

inbreeding rates, and hence, reduced heterozygosity and greater

inbreeding depression [4,65]. Third, warming advances toward

historically cold areas are expected to facilitate invasions of species

from warm areas, resulting in increasing intensity of competition

through, for example, resource competition or predation [22,23].

Finally, it has been shown that lizard extinctions may occur in

structurally intact habitats when climate warming imposes alter-

ations to thermoregulatory behaviour. Lizards prevent body

overheating mostly by intermittent retreats into cooler shelters

during hot days [21,66]. With climate warming, lizards will be

forced to spend longer periods retreated in these shelters, resulting

in reduced opportunities for reproduction and foraging. Because the

breeding season requires significant energy intakes to be allocated in

reproduction, lizards experiencing climate warming are expected to

suffer severe energetic shortfalls [22]. For viviparous species (see

third evolutionary scenario above), mostly restricted to high

latitudes-elevations [43,55], this may incur in even greater fitness

costs as the high energy requirements of pregnant females to fully

develop embryos are accompanied by considerable foraging risks

caused by the detrimental impact of the pregnancy burden on

escaping efficiency [55,67]. These factors are expected to interact in

additional ways with some of the three evolutionary scenarios

described above to functionally link historical dynamics of dispersal

with future consequences under climate change. For example, if

niche conservatism is important, habitat fragmentation may

become an important factor behind depletion of genetic diversity

in Liolaemus populations.

Alternatively, species facing climate warming can escape

extinction through rapid genetic responses to the changing climate

[4,6,23]. However, as stated above, rapid adaptations are likely to

occur in short-generation organisms [19], but seem less likely in

larger organisms like lizards [17,22]. Therefore, under any of the

warming-related scenarios described in the previous paragraph,

Liolaemus biodiversity from high latitudes-elevations may become

increasingly threatened under persisting climate change.

Body size and range-size variation
The influence of body size on most evolutionary and ecological

processes has led to suggest that body size mediates differential

dispersal ability among different sized species, and hence, that

body size might predict range-size [1,32,34,35]. However,

Liolaemus body sizes are unrelated with interspecific variation in

range-size, and no other pattern (e.g. triangular distributions of

data points; see Gaston, 2003) is present. This finding is consistent

with a recent study on Liolaemus range-size variation as a function

of body size [42], and with previous observations that Liolaemus

body sizes do not vary predictably with latitude-elevation gradients

[38,68], which, in contrast, are related with range-size variation

(see above).

Despite the lack of predictable covariation between body size

and range-size in Liolaemus, it seems unlikely that body size does

not influence dispersal ability in these lizards. An important

difficulty that may preclude the identification of a common effect

of body size is that no general tendencies are always expected to

exist as several factors are known to interact in different ways

across different phylogenetic groups and environmental contexts.

For example, Bowler & Benton [35] suggested that dispersal ability

is context-dependent, and that depending on given selective regimes

dispersal ability may or may not be related with body size. This is

probably the case in Liolaemus. Since these lizards inhabit one of the

widest environmental ranges known within reptiles, multiple

selective contexts may operate across species to shape specific body

size-dispersal ability relationships, potentially impeding the detec-

tion of a generalized mechanism from a generalized pattern

involving the relationship between body size and range dimensions.

Materials and Methods

Data collection
Data were collected for a total sample of 121 Liolaemus species

(Table S1) representing all major clades within the genus and

occurring in a latitudinal and elevational range that represents its

entire diversity (e.g., [36]). Therefore, this dataset covers the

phylogenetic and ecological diversity that has resulted from the

evolutionary radiation of this group. Data comprise information

on geographical distribution and body size per species.

Geographical data consist of species-level information for spatial

location and range-size in latitude and elevation. These data have

Range-Size Evolution in a Lizard Radiation
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been derived from a number of published sources

[38,39,42,43,44,58,68,69,70,71] and from a total record of

,8,500 specimens from institutional collections (see Appendix

S1; the use of the Liolaemus data for publication purposes has

specifically being granted by all the listed institutions in this

appendix) and field records. First, spatial location of species was

estimated using a distributional midpoint approach, where a

unique spatial point derived from the distributional data per

species is used as a predictor of range-size [29,72]. Given that

this study’s question focuses on range-size variation across an

environmental gradient, I used the adjusted latitudinal midpoint

(ALM) variable as an indicator of species distribution, which

integrates in a single scale the climatic variation from decreasing

environmental temperature in latitude and elevation [42,73]. The

ALM is calculated based on the assumption that temperatures in

elevational transects decrease 0.65uC for each 100 m of increased

elevation [42,73]. To correct the dataset for latitudinal and

elevational covariation in temperature, Cruz et al. [42] obtained a

correction factor, computed for the latitudinal range occupied by

Liolaemus lizards (based on the above 0.65uC for each 100 m) that

consists in adding 1.752u (latitude) for every 200 m increases in

elevation on altitudinal midpoint values higher than 699 m above

sea level. Thus, Cruz et al. [42] derived a corrected latitudinal

value for latitude and elevational thermal covariation with the

formula y = 0.009x–6.2627, where x represents the altitudinal

midpoint for each species, and y the corrected temperature for

latitude, which is added to the latitudinal midpoint for each

species. This results in ALM values for South American areas

where Liolaemus occur [42]. The ALM scale is intuitively simple to

interpret, as increasing ALM values represent the integrated effect

of increasing latitude and elevation, and hence, a decrease in

environmental temperature. Then, range-size variation was

analyzed separately for latitudinal and elevational ranges as a

function of ALM, where the minimum and maximum records of

latitudinal and elevational distribution per species were taken as

the limits of the range. Both variables were selected because they

are expected to reflect the magnitude of species tolerance to

different climatic and ecological conditions experienced by a single

species.

Body size data were obtained from a total sample of 4,554

specimens (Table S1). I used snout-vent length (SVL) as a proxy

for body size. SVL is the standard body size measure in lizards as it

is simple to measure in living and preserved specimens, and

covaries with ecological, life history and morphological traits

[74,75,76,77]. Given that lizards continue to grow after sexual

maturity, it is difficult to estimate standard body size. Therefore, it

has been suggested that intermediate percentiles between the

mean body size and the largest recorded specimen (both

extensively used) provide better estimates of adult size (e.g.,

[78]). Hence, SVL was obtained using means from the largest two-

thirds of the adult samples (e.g., [38,79]) to avoid under- or

overestimations of body size. For analyses, a single SVL value per

species was obtained by averaging male and female SVL averages.

This approach is more appropriate than pooling all available adult

specimens per species to calculate a single mean, as the average

would be influenced by the number of males and females in the

sample, and hence, by the overall frequency distribution of body

size. I then calculated sexual size dimorphism (SSD) with the

formula ln(male size/female size) [80]. SSD was then included in

the regression models (as an additional predictor) where body size

is the main predictor, in order to account for a potential effect of

the magnitude of size differences between the sexes, which are in

turn obscured by a single species SVL value.

Statistical analyses and phylogenetic control
A comparative approach based on species-level data was

employed. Prior to statistical analyses, variables were ln-transformed

to reduce skew and homogenize variances [81]. To investigate the

questions whether range-size variation among species is a function of

variation in midpoint geographical location (ALM) and of body size

(SVL), regression analyses were performed. Given that trait

expressions and environments recorded in closely related species

can be influenced by their common phylogenetic history, data points

from related species in a clade cannot be regarded as independent

values for statistical analyses [82,83]. Therefore, I conducted the

same regressions employing, first, conventional (non-phylogenetic

assuming a star phylogeny), and then phylogenetic statistical analyses

to account for potential phylogenetic effects and infer correlated

evolution between variables. Results from both analyses are reported

to evaluate the consistency of expected effects of predictors (ALM

and SVL, separately) on the response variable (range-size).

For phylogenetic analyses, I used a Liolaemus phylogeny (Fig. S1)

containing 68 of the 121 species for which data were available (and

which were included in non-phylogenetic analyses). For analyses of

body size and range-size, SVL data were missing for three of the species

in the phylogeny (Table S1), and hence, these phylogenetic analyses

were reduced to 65 species. The phylogeny was derived from two

previous phylogenetic hypotheses inferred by Espinoza et al. [49]

and Abdala [84]. Phylogenetic studies of evolutionary relationships

within Liolaemus have consistently revealed the existence of a major

monophyletic clade nested within the genus, known as boulengeri

complex (e.g., [43,49,84,85]), which has recently been studied by

Abdala [84]. Therefore, I used Espinoza et al.’s [49] tree as the basis for

the Liolaemus phylogeny, but replaced the monophyletic boulengeri

complex with that of Abdala [84] since this phylogenetic hypothesis

contains a larger number of species sampled in my dataset. Since these

two phylogenetic trees were inferred using combined molecular and

morphological data [49,84], branch lengths were set equal to 1.0, and a

speciational Brownian motion model of evolutionary change was

employed for phylogenetic analyses [49,86,87]. Then, Felsenstein’s

standardized phylogenetic independent contrasts (PIC) [82] were

calculated from this phylogeny using the software COMPARE version

4.6b [88]. I obtained standardized PIC for all the variables involved in

the analyses (given that this approach results in n-1 independent

contrasts, phylogenetic regressions contain 67 and 64 values for the 68-

species and 65-species trees, respectively). With PIC, the degree of

covariation between variables reflects the potential (but not causation)

for these variables to have been functionally related during evolu-

tionary change (e.g. evolutionary dependence between two traits is

inferred if large changes in the contrasts of one variable are paralleled

by large changes in the contrasts of the other). Regressions based on

PIC were forced through the origin [82,83,89].

Supporting Information

Figure S1 Phylogenetic relationships of Liolaemus lizard species

inferred from combined molecular and morphological data

(according to refs. [49], [84]). See main text for details.

(TIF)

Table S1 Summary of Liolaemus species included in this study.

(DOC)

Appendix S1 This appendix contains references to the institu-

tions that kindly provided permission to study their Liolaemus

collections. Important part of the data used in this study comes

from these museum collections (see Materials and methods).

(DOCX)
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