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ABSTRACT

Fitness results from an optimal balance between survival, mating success and fecundity. The interactions between
these three components of fitness vary depending on the selective context, from positive covariation between them, to
antagonistic pleiotropic relationships when fitness increases in one reduce the fitness of others. Therefore, elucidating
the routes through which selection shapes life history and phenotypic adaptations via these fitness components is of
primary significance to understanding ecological and evolutionary dynamics. However, while the fitness components
mediated by natural (survival) and sexual (mating success) selection have been debated extensively from most possible
perspectives, fecundity selection remains considerably less studied. Here, we review the theoretical basis, evidence
and implications of fecundity selection as a driver of sex-specific adaptive evolution. Based on accumulating literature
on the life-history, phenotypic and ecological aspects of fecundity, we (i) suggest a re-arrangement of the concepts
of fecundity, whereby we coin the term ‘transient fecundity’ to refer to brood size per reproductive episode, while
‘annual’ and ‘lifetime fecundity’ should not be used interchangeably with ‘transient fecundity’ as they represent different
life-history parameters; (ii) provide a generalized re-definition of the concept of fecundity selection as a mechanism
that encompasses any traits that influence fecundity in any direction (from high to low) and in either sex; (iii) review
the (macro)ecological basis of fecundity selection (e.g. ecological pressures that influence predictable spatial variation in
fecundity); (iv) suggest that most ecological theories of fecundity selection should be tested in organisms other than birds;
(v) argue that the longstanding fecundity selection hypothesis of female-biased sexual size dimorphism (SSD) has gained
inconsistent support, that strong fecundity selection does not necessarily drive female-biased SSD, and that this form of
SSD can be driven by other selective pressures; and (vi) discuss cases in which fecundity selection operates on males.
This conceptual analysis of the theory of fecundity selection promises to help illuminate one of the central components
of fitness and its contribution to adaptive evolution.
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I. INTRODUCTION

Selection theory posits that fitness is a function of the
balanced optimization between survival, mating success
and fecundity (Williams, 1966; Rice, 2004; Charlesworth
& Charlesworth, 2010). Three major mechanisms are
responsible for the fitness dynamics that determine the
trajectory of evolutionary change through differences in life-
time reproductive success (Darwin, 1859, 1871; Bell, 2008).
Among these, natural and sexual selection explain how
inter-individual differences in the exploitation of ecological
resources and access to mates, respectively, regulate the
genetic basis of phenotypic adaptations (Andersson, 1994;
Schluter, 2000; Charlesworth & Charlesworth, 2010). Both
mechanisms of selection form the central structure of current
evolutionary theory, and have extensively been studied from
a variety of conceptual and empirical perspectives (Williams,
1992; Andersson, 1994; Schluter, 2000; Gavrilets, 2004;
Rice, 2004). The third mechanism, fecundity selection,
traditionally describes the fitness advantages resulting from
selection for traits that increase fecundity (i.e. number of
offspring; see Section II) per reproductive episode (Roff,
2002). In contrast to the other two mechanisms of selection,
fecundity selection has been the subject of considerably less
research despite its major role in life-history theory (Lack,
1954; Williams, 1966; Shine, 1988; Roff, 2002), and its influ-
ence on the fitness outcomes of natural and sexual selection
due to their interactions with the numbers of offspring that
females produce (Sinervo, 2000; Ghalambor & Martin, 2001;
Roff, 2002). Despite the above distinction between the three
main mechanisms of selection as the engine of adaptation, it
is essential to stress that evolution is the multivariate response
of whole organisms’ components to these forms of selection
operating in coordination (Fisher, 1930; Williams, 1966).

The hypothesis of fecundity selection was originally
formulated by Darwin (1874) to explain the evolution of
large body size in females, and in particular, the widespread
evolution of female-biased sexual size dimorphisms (SSDs) in
which females are larger than males (Shine, 1988; Cox, Skelly
& John-Alder, 2003). The mechanistic basis of fecundity
selection is that larger female size provides a greater body
space to accommodate more offspring (Williams, 1966),
and additionally, a higher capacity for energy storage to
be subsequently invested into reproduction (Calder, 1984).
The classical prediction of this hypothesis is that higher
fecundity is a function of selection for larger female size, when
fecundity depends on variation in female size and covaries

positively with fitness. From this fundamental prediction
a second major prediction can be derived: that strong
fecundity selection generates directional selection on female
body size or its components (see Braña, 1996; Scharf &
Meiri, 2013), hence creating an asymmetrical selection effect
between the sexes that drives female-biased SSD. Ever since
Darwin (1874), most studies of fecundity selection have
focused on overall female body size. However, a number of
recent studies have expanded this view of fecundity selection
towards a mechanism that influences fitness differentials
via selection on any traits that are functionally linked to
increased fecundity (e.g. Olsson et al., 2002; Parker et al.,
2011; Winkler, Stolting & Wilson, 2012). In addition, it
has been suggested that although fecundity selection can
explain female-biased SSD, the expression and magnitude
of this intersexual size asymmetry does not necessarily reflect
the strength of fecundity selection (Zamudio, 1998; Olsson
et al., 2002; Cox et al., 2003; Pincheira-Donoso & Tregenza,
2011; Soulsbury, Kervinen & Lebigre, 2014). Therefore,
female-biased SSD can evolve in the absence of fecundity
selection (e.g. via sexual selection for smaller male body size),
and this form of selection can, in turn, be strong in the absence
of female-biased SSD (e.g. when sex-specific directional
selection pressures operate independently in both sexes).
Finally, the rather dogmatic view that fecundity selection is
mostly, or entirely, a female-specific mechanism has been
relaxed by studies suggesting that variation in male body
size or body shape components can have a causal effect on
fecundity (Savalli & Fox, 1998; Hoffman, Mobley & Jones,
2006; Wilson, 2009; Winkler et al., 2012).

Collectively, the fundamental assumptions and tenets that
have characterized fecundity selection since its formulation
demand the need for important modifications to this original
concept, given the emergence of new perspectives and evi-
dence that reveal a much more complex evolutionary force in
terms of its targets (i.e. fecundity–fitness relationships, traits,
sexes). However, despite the remarkable role of variation in
fecundity among organisms of the same and different species,
and the underlying selection behind the traits that regulate
this variation, no review on the subject has appeared.
Herein, we review the concept of fecundity selection and
its implications in evolutionary biology and ecology, with
a focus on research conducted in animals. Our conceptual
analysis aims to restructure the major components of fecun-
dity selection theory, including the fundamental definition
of it and of its central terms (such as ‘fecundity’) framed
within life-history theory, the impact of fecundity selection
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on a multitude of traits other than body size, and the way
this mechanism drives adaptive evolution in males, and we
suggest how the (macro)ecological basis and consequences of
this form of selection can influence and provide explanations
for major events of evolutionary change that have been
investigated for decades. Consequently, our review aims to
establish new directions in relation to the conceptual basis
and the predictions that emerge from these concepts, to
present a modern version of fecundity selection theory.

II. THE CONCEPTUAL FOUNDATION OF
FECUNDITY SELECTION

Fecundity selection has historically been regarded as the
mechanism that promotes evolution of larger brood sizes via
evolution of larger female body size (e.g. Cox et al., 2003;
Fairbairn, Blanckenhorn & Szekely, 2007; Pincheira-Donoso
& Tregenza, 2011). In its original formulation as the
‘fecundity advantage hypothesis’, Darwin (1874, p. 332)
stated that ‘increased size must be in some manner of more importance
to the females . . . and this perhaps is to allow the production of a vast
number of ova’. Darwin (1874) derived the fecundity selection
hypothesis to explain, in part, the evolution of female-biased
SSD across animal species (Section IV). The idea that
fecundity selection targets female body size has implicitly
prevailed in the literature given the overwhelming volume of
empirical evidence revealing a positive relationship between
female size and fecundity (Shine, 1988; Reiss, 1989; Stearns,
1992; Roff, 2002; Blanckenhorn, 2005; Fairbairn et al.,
2007), especially amongst ectotherms, e.g. insects (Honek,
1993; Preziosi et al., 1996), fish (Wootton, 1979; Morita &
Takashima, 1998; Foster & Vincent, 2004; Wilson, 2009),
amphibians (Shine, 1979; Kupfer, 2007, 2009), and reptiles
(Cox et al., 2003; Cox, Butler & John-Alder, 2007; Stephens
& Wiens, 2009; Pincheira-Donoso & Tregenza, 2011; Meiri,
Brown & Sibly, 2012). This relationship, however, is less
robust in birds and mammals (Boyce, 1988; Shine, 1988;
Purvis & Harvey, 1995; Lindenfors, Gittleman & Jones,
2007; Szekely, Lislevand & Figuerola, 2007). Importantly,
this positive relationship between body size and fecundity is
due to the fact that overall body size may often correlate
positively with body regions that directly influence variation
in fecundity, and not necessarily because body size as a
whole is responsible for levels of fecundity. For example,
a positive body size–fecundity relationship can result from
a positive relationship between female abdomen volume
(where embryos are actually located) and body size, when
fecundity is a direct function of available abdominal space
(Andersson, 1994; Braña, 1996; Olsson et al., 2002; Scharf &
Meiri, 2013). Therefore, a first needed step is to abandon
the definition of fecundity selection as an overall body
size-specific form of selection, and instead conceive it as
a force that selects for any phenotypic trait(s) that increases
fitness through fecundity.

Although far less abundant than examples involving
overall female size, cases identifying fecundity selection on

specific body regions that increase fecundity have started
to emerge. For example, Olsson et al. (2002) showed that
positive directional fecundity selection in a lizard (Niveoscincus
microlepidotus) targets female trunk length for increased
fecundity, while negative directional sexual selection targets
male trunk length. Despite the strong positive effect of
fecundity selection on female trunk length, males are
significantly larger in body size (i.e. male-biased SSD).
Therefore, this study supports the fecundity, but not the body
size (or SSD), prediction of fecundity selection. Obviously,
in contrast to animal-centred research, this is not a problem
for fecundity selection studies on plants, where fecundity
differentials are linked to a number of structural reproductive
traits other than overall plant size (e.g. Stewart & Schoen,
1987; Shaanker, Ganeshaiah & Bawa, 1988).

A recurrent issue in fecundity-related studies is the usage of
the term ‘fecundity’ to refer to different forms of reproductive
output. In the current literature, ‘fecundity’ is interchange-
ably employed to refer to the number of offspring per brood,
per breeding season, and/or during a female’s lifetime.
However, these measures of reproductive output repre-
sent importantly different life-history parameters that can
influence fitness in fundamentally different ways, given that
fecundity and fitness are not necessarily equivalent (e.g.
Williams, 1966; Shine, 1988; Roff, 2002; see Section II.1). In
fact, the foundation of Williams’s (1966) central life-history
principle that describes trade-offs between current and future
reproduction relies on the explicit distinction between cur-
rent and future reproductive output (Section II.1). Similarly,
offspring per breeding season is also a parameter with a dif-
ferent meaning given that some species with high fecundity
per brood can have low reproductive output per breeding
season (e.g. one large clutch per year), while other organisms,
such as Anolis lizards, lay a one-egg clutch multiple times per
season (Losos, 2009). Therefore, to clarify the use of termi-
nology under the generic concept of fecundity, we suggest the
use of ‘lifetime fecundity’ (LF) for fecundity during an indi-
vidual’s lifetime [and which will sometimes be the same as
lifetime reproductive success (LRS)], and ‘annual fecundity’
(Badyaev & Ghalambor, 2001) for fecundity per breeding
season. Finally, we suggest that for the number of offspring
produced per brood per single reproductive episode (e.g.
eggs in a single clutch) the term ‘transient fecundity’ should
be used. This distinction may prove operationally useful, and
we recommend that this terminology is adopted in future
studies. Therefore, strictly speaking, none of these definitions
of fecundity should (from a conceptual point of view) be
treated as equivalent to fitness, which we define as number of
offspring that survive to breed (Lack, 1954; Fairbairn, 2006;
Hunt & Hodgson, 2010). However, from a practical point of
view, we refer to fitness as LRS (Fairbairn, 2006).

(1) Fecundity and lifetime reproductive success

Differential fitness within a population can often be a
function of differential fecundity. The most straightforward
link between fitness and fecundity is the positive relationship
between the two, such that phenotypes that confer higher
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fecundity are favoured by selection due to their fitness
advantage (Rockwell, Findlay & Cooke, 1987; Stewart &
Schoen, 1987; Godfray, Partridge & Harvey, 1991; Roff,
2002). When fecundity correlates positively with fitness,
selection takes the shape of a positive directional fitness
function. Positive directional selection is often a central
idea implicit in studies of fecundity selection, which has
also been repeatedly satisfied by empirical observation (e.g.
Rockwell et al., 1987; Gibbs, 1988; Godfray et al., 1991).
However, life-history theory predicts that selection favours
traits whose expression enhances LRS. And, given that
fitness is not necessarily a constant positive function of
fecundity, higher fecundity does not necessarily reflect higher
fitness (Williams, 1966; Shine, 1988; Godfray et al., 1991;
Roff, 2002). This simple principle reveals a fundamental
feature of evolution by selection, namely, that adaptation
results from the maximization of an individual’s inclusive
fitness (Hamilton, 1964). Therefore, selection as a whole
balances fitness components by simultaneously targeting an
individual’s traits that maximize its inclusive fitness.

Fecundity can compromise fitness via two main antagonis-
tic interactions described by two central life-history princi-
ples, namely, Lack’s (1947) and Williams’s (1966) principles.
Both principles rely on optimality models which predict that
fecundity is described by a negative quadratic (stabilizing)
selection fitness function where intermediate fecundity values
result in higher reproductive success (Williams, 1966; Boyce
& Perrins, 1987; Gustafsson & Sutherland, 1988; Stearns,
1992; Sinervo, 2000). First, Lack’s principle predicts that
selection favours brood sizes that yield the highest number
of viable offspring that survive to breed (Lack, 1947, 1954).
Hence, it describes a trade-off between offspring quantity
and quality (Smith, Kallander & Nilsson, 1989; Sinervo et al.,
1992; Sinervo, 2000; Roff, 2002; Sibly et al., 2012). Sec-
ond, Williams’s principle incorporates the costs of parental
energy allocation into reproduction to predict that the
extent of investment in current reproduction entails a reduc-
tion in future reproduction, and hence, compromises LRS
(Williams, 1966; Nur, 1984; Gustafsson & Sutherland, 1988;
Sinervo & DeNardo, 1996; Roff, 2002). Consequently, both
principles predict that the relationship between fitness com-
ponents (offspring and parental viability and/or future fecun-
dity) and fecundity is consistently under a strong trade-off
with natural selection arising from the costs of reproduction
(Gustafsson & Sutherland, 1988; Sinervo, 2000; Ghalambor
& Martin, 2001; Roff, 2002). Therefore, although fecundity
selection by historical definition implies selection favouring
higher fecundity, this form of selection is inevitably countered
by natural selection on lifetime reproductive success through
viability, thus often creating non-linear fitness functions.

(2) The shape and definition of fecundity selection

A singular aspect of fecundity selection is that, strictly
speaking, fitness functions cannot be obtained by regressing
a measure of fitness on a phenotypic trait, given that
fecundity (as defined in Section II.1) is a measure of
phenotype rather than a measure of fitness. Thus, fecundity

is the trait on which fitness (e.g. LRS) should be regressed.
As explained above, the reason for this is that fitness is
a function, rather than an equivalent, of fecundity (e.g.
see Williams’s principle). A fundamental implication that
emerges from this fitness–fecundity relationship is that the
original formulation of fecundity selection (Darwin, 1874)
fails to capture the multiple effects that fecundity exerts
on fitness by defining it as a selective force with positive
directional effects. For example, the Williams’s principle
predicts that high fecundity can have a fitness disadvantage
(Williams, 1966; Shine, 1988; Roff, 2002). Also, other studies
show that low fecundity (although not necessarily low annual
fecundity) can be selected for when small broods have a
fitness advantage. For example, the bet-hedging fecundity
strategy (i.e. adaptive reduction of brood size) has been
demonstrated across a wide diversity of organisms (Gillespie,
1974; Lehmann & Balloux, 2007; Griebeler, Caprano &
Bohning-Gaese, 2010). This phenomenon evolves, among
other causes, when predation intensity is high and mothers
spread the risk of offspring loss across multiple independently
laid smaller clutches (Griebeler et al., 2010; see also Section
III.1b). As indicated above, the lizards of the prolific Anolis
radiation, which lay multiple one-egg clutches yearly (Losos,
2009), are a prime example of this phenomenon. Therefore,
selection for fecundity is known to favour different brood
sizes depending on the way that environmental demands
influence fitness, and hence, the traditional definition of
fecundity selection describes only the positive extreme of the
whole range of outcomes that result from this mechanism.

Consequently, the above discussion demands a redefini-
tion of the concept of fecundity selection. Here, we define
fecundity selection as ‘differential lifetime reproductive success (i.e.
fitness) as a function of variation in phenotypic traits that influence fecun-
dity’. Our definition (i) generalizes the action of fecundity on
reproductive success by incorporating the fitness advantages
that can result from selection for reduced fecundity; (ii) does
not restrict the action of fecundity selection to female body
size, but instead, recognizes that any heritable phenotypic
trait that results in enhanced fitness through adjustments in
fecundity can adapt via fecundity selection; (iii) removes from
the concept the predominant view that fecundity selection
operates on females only (as will be discussed in Section VI,
male phenotypes influence fecundity in species where males
play a substantial role in embryo development). Therefore,
collectively, our definition denies presumptions on the trait-
and sex-specificity of this mechanism. Another advantage of
our definition is that it does not restrict the action of fecundity
selection to animals only. Fecundity selection in fact operates
on plants (e.g. Clegg & Allard, 1973; Lloyd, 1987; Stewart &
Schoen, 1987; Shaanker et al., 1988; Vekemans, Schierup &
Christiansen, 1998; Cummings et al., 2002).

III. THE (MACRO)ECOLOGY OF FECUNDITY
SELECTION

The contribution of fecundity to fitness is influenced by mul-
tiple ecological factors that impose limits to the evolution
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of brood size via the costs that production of offspring per
reproductive episode exert on reproductive success. A major
implication of this interaction between fecundity and eco-
logical pressures is that fecundity selection is not necessarily
positive and directional, but can maximize fitness via adaptive
reductions of brood size depending on the ecological context.

Ecological pressures on fecundity arise from a number of
environmental components, including climate (e.g. season-
ality, temperature, and a number of factors that vary with
geographic gradients), and from interspecific interactions,
such as predation (Williams, 1966; Godfray et al., 1991; Roff,
2002). For example, extensive evidence shows that predation
has a major impact on fecundity (e.g. larger broods can be
more vulnerable to predators when multiple offspring are
visited more frequently by caring parents or produce more
noise). Interestingly, given that most (if not all) of these
ecological pressures vary with geography, the analysis of such
factors in a macroecological perspective can shed light on the
general factors underlying patterns of variation in fecundity.

(1) Fecundity in a macroecological context: the
‘Moreau–Lack’s rule’

Spatial variation in selection arising from environmental
differences along geographic gradients exerts major effects
on local life-history adaptations, which results in the
expression of large-scale patterns of life-history evolution
(Moreau, 1944; Stearns, 1992). One of the most important
such macroecological life-history generalizations is the
observation that fecundity increases predictably with
increasing latitude (Moreau, 1944; Lack, 1954; Bennett &
Owens, 2002). This hypothesis, proposed by Moreau (1944)
and Lack (1954) to explain bird life histories, has achieved the
status of a life-history paradigm (e.g. Musvuugwa & Hockey,
2011), for which we propose the name ‘Moreau–Lack’s
rule’. Historically, this rule has heavily focused on clutch size
variation in birds (e.g. Jetz, Sekercioglu & Bohning-Gaese,
2008; McNamara et al., 2008a; Griebeler et al., 2010).

During the early foundation of Moreau–Lack’s rule,
Moreau (1944) suggested that the observed differentials
in fecundity along geographic gradients were unlikely to
be explained by one single factor. However, he suggested
that higher mortality in more seasonal environments (i.e.
higher latitudes) might be a predominant factor behind this
life-history pattern. Later, Lack (1954) conferred primary
importance (for both offspring and parental fitness) to the
effect of food availability and management across different
latitudes. He suggested that day-length increases towards the
poles (e.g. ∼50% between the equator and central Europe,
and nearly 100% between the equator and the arctic) result
in increased opportunities for parents to collect more food.
Thus, the conditions to successfully produce more offspring
are better (Lack, 1954). However, Lack claimed that extreme
day lengths (at the poles) may be detrimental for parental
survival as permanent food searching would exhaust them.
Additionally, he suggested that declines in food availability
at extremely high latitudes (e.g. Scandinavia) may drive the
expression of a similar fecundity–latitude function closer to

the poles. Therefore, this would create a non-linear gradient
with increases towards moderately high latitudes, but then a
decrease from these latitudes towards the poles (Lack, 1954).
For decades, the prediction of a macroecological fecundity
gradient has consistently been demonstrated by numerous
bird studies conducted both within (Klomp, 1970; Koenig,
1984; Young, 1994; Koenig & Gwinner, 1995; Sanz, 1998;
Dunn et al., 2000) and among species (Martin, 1996, 2002;
Bohning-Gaese et al., 2000; Martin et al., 2000; Cardillo,
2002; Jetz et al., 2008; Rubolini & Fasola, 2008). Likewise,
similar patterns have been shown to hold in a number of
other organisms, including mammals (Lord, 1960; Jackson,
1965; Conaway, Sadler & Hazelwood, 1974; Innes, 1978;
Cockburn, Lee & Martin, 1983; Swihart, 1984; Whorley
& Kenagy, 2007; Bywater et al., 2010), reptiles (Fitch,
1970; Iverson et al., 1993; Forsman & Shine, 1995; Litzgus
& Mousseau, 2006; Simoncini, Pina & Siroski, 2009),
amphibians (Kuramoto, 1978; Tilley, 1980; Cummins,
1986; Morrison & Hero, 2003), and fish (Fleming & Gross,
1990; Kokita, 2004). The consistency of this latitudinal
fecundity gradient (LFG, hereafter) has, as indicated above,
achieved the status of a life-history paradigm (Musvuugwa
& Hockey, 2011; Rose & Lyon, 2013). However, as can
be expected for any macroecological generalization, other
studies have also failed to support this rule in a number
of cases, including vertebrates and invertebrates (e.g.
Yom-Tov, Christie & Iglesias, 1994; Jansen et al., 2014).

The accumulation of empirical evidence and the devel-
opment of more complex and realistic theoretical models
(McNamara et al., 2008a; Griebeler et al., 2010) have resulted
in important progress for understanding the shape of, and the
proximate mechanisms underlying, this fecundity gradient.
First, apart from the major conclusion that Moreau–Lack’s
rule is a consistent macroecological pattern, another
conclusion that can be drawn from these studies is that the
non-linear gradient expected by Lack is not a generality.
Indeed, the studies based on the largest numbers of species
from the highest diversities of areas in the world (Cardillo,
2002; Jetz et al., 2008) have shown a consistent increase of
clutch size with elevation. Therefore, these observations
(still heavily bird-biased) seem to rule out Lack’s (1954)
non-linear latitudinal expectation. Second, this evidence
has led to the consolidation of four main hypotheses which,
probably more dependently than independently, can explain
Moreau–Lack’s rule. We present these hypotheses below.

(a) Seasonality and Ashmole’s hypothesis

Increasing latitudes result in increasing seasonality, which
determines patterns of temporal fluctuation of resources
throughout the year. Based on this premise, Ashmole (1963)
suggested that (bird) fecundity varies spatially as a function
of spatial patterns of seasonality. Towards higher latitudes,
where differences in food availability between seasons are
greater, birds are predicted to suffer higher mortality rates
during the winter as a result of lower resource abundance.
These declines in population density turn into favourable
feeding conditions for survivors, as the per capita food
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availability is higher when the next breeding season starts,
which therefore facilitates opportunities for more energy
to be invested in fitness through higher fecundity. Ricklefs
(1980) later made the distinction that latitudinal fecundity
gradients may result specifically from factors that reduce
population density during the winter (the non-reproductive
season) rather than by higher relative abundance of food
during the start of the breeding season. Thus, Ashmole’s
hypothesis relies on resource availability as a driving factor
behind density-dependent dynamics of fecundity. Decades
of both theoretical (McNamara et al., 2008a; Griebeler et al.,
2010) and empirical confirmation (Ricklefs, 1980; Koenig,
1984; Birt et al., 1987; Dunn et al., 2000; Yom-Tov & Geffen,
2002; Jetz et al., 2008) have made this hypothesis potentially
the main mechanistic explanation for the pattern described
by Moreau–Lack’s rule.

However, an alternative hypothesis for the latitudinal
fecundity gradient under the effect of seasonality exists:
longer days during the breeding season at higher latitudes
give parents the opportunity to spend more time foraging
each day, which thus increases daily total food delivery to
the brood, and hence, increases the potential to sustain more
offspring (Rose & Lyon, 2013). Yet, despite the mechanistic
appeal of this hypothesis – which was questioned by Lack
(1954) himself – it remains virtually untested. Interestingly,
a recent study conducted on the latitudinally widespread
tree swallow (Tachycineta bicolor), revealed support for this
‘day length’ hypothesis, while showing little support for the
classical alternative (Rose & Lyon, 2013). Thus, these authors
suggested that the length of an animal’s workday can be an
important, yet unappreciated, factor behind the evolution
of fecundity in a macroecological context. However, once
again, a major limitation for the generality of these hypothe-
ses is the lack of studies in organisms other than birds. So far,
only a few studies conducted in non-avian organisms have
attempted to address aspects of the Ashmole’s hypothesis (e.g.
Lindstedt & Boyce, 1985; Sainte-Marie, 1991; Iverson et al.,
1993), although not always focusing on its links to fecundity.

(b) Differences in nest predation

Nest predation exerts major effects on offspring and adult
fitness, and hence, spatial gradients of nest predation
are expected to cause fecundity gradients (Martin, 1996;
McNamara et al., 2008a; Lima, 2009; Griebeler et al., 2010).
Traditionally, it has been assumed that larger clutches/litters
are more detectable by predators as a result of more
frequent parental care (e.g. feeding visits) and overall noisier
offspring (Skutch, 1949; Slagsvold, 1984; Godfray et al.,
1991; Griebeler et al., 2010). Therefore, areas with intense
nest predation are predicted to select for multiple nests of
smaller clutches with shorter development times (Skutch,
1949; Martin, 1996). Given that predation is thought to
intensify towards the tropics (e.g. Griebeler et al., 2010),
the consistent observation that females tend to produce
multiple smaller clutches in these environments has been
explained as a consequence of intense nest predation.
However, although nest predation is often invoked as a

potentially major driver of the latitudinal fecundity gradient
(Skutch, 1949; Slagsvold, 1982; Lima, 1987; Kulesza, 1990;
Jetz et al., 2008; Martin & Briskie, 2009), this hypothesis
has also often been discredited. For example, intense nest
predation can slow down developmental rates because
reduced parental visits result in food limitation (Ghalambor
& Martin, 2001), and development, at least in birds, is
often slower towards the tropics (Martin, 1996; Geffen &
Yom-Tov, 2000). Also, this hypothesis implicitly assumes
that predation is caused by visually oriented predators,
despite the fact that chemically oriented predators (those with
highly developed olfactory senses, such as snakes) are very
common (Thompson & Burhans, 2003). Not surprisingly
then, evidence for the plausibility of this hypothesis is
conflicting. Both mathematical models (McNamara et al.,
2008a; Griebeler et al., 2010) and empirical analyses (Geffen
& Yom-Tov, 2000; Robinson et al., 2000; Martin et al., 2006;
Biancucci & Martin, 2010) have often suggested that nest
predation appears to play only a secondary (if any) role.
Others reveal more complex interactions between clutch
size and predation. For example, Biancucci & Martin (2010)
showed that nest predation risk increases with nest size.
However, nest size is not necessarily related to clutch size and
hence, nest predation risk does not, according to this view,
drive the latitudinal fecundity gradient. Finally, differentials
in nest predation intensity have been found to be unimportant
in explaining elevational fecundity gradients (e.g. Badyaev,
1997; Badyaev & Ghalambor, 2001), or have resulted in
conflicting observations (Lu, 2008). Given the overwhelming
tendency for research on birds, studies on non-avian models
are needed to assess the generality of this hypothesis.

(c) Length of breeding season (LBS) hypothesis

Populations from higher latitudes experience reduced oppor-
tunities for multiple reproductive episodes per year as a
result of increasing seasonality and shorter warm seasons.
Therefore, according to the LBS hypothesis, the intensity of
fecundity selection increases as a function of increasing lati-
tudes (Lack, 1954; Fitch, 1970; Tinkle, Wilbur & Tilley, 1970;
Cox et al., 2003; Pincheira-Donoso & Tregenza, 2011). The
primary prediction of this hypothesis is that shorter breeding
seasons create fecundity selection for larger clutches that
compensate for reduced reproductive frequency. The spe-
cific factors linking length of the warm season with reduced
reproductive frequency can be common to all organisms or
vary among lineages. For example, factors such as prolonged
snow cover or delayed emergence of food are expected to
delay the start of the breeding season, thus reducing repro-
ductive opportunities for organisms in general (Cox et al.,
2003; Griebeler et al., 2010). By contrast, thermal constraints
on annual and daily activity can cause more severe effects on
ectotherms. At high latitudes (and elevations), not only envi-
ronmental temperatures are lower, but also warm hours per
day are fewer (Nagy & Grabherr, 2009), which makes repro-
ductive seasons even more severely limited for ectothermic
organisms. Therefore, compared to endotherms, ectotherms
have even more limited opportunities for reproduction (Fitch,
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1970, 1978, 1981; Tinkle et al., 1970; Cox et al., 2003, 2007;
Pincheira-Donoso & Tregenza, 2011; Pincheira-Donoso
et al., 2013). As a result, theory predicts that fecundity selec-
tion favours traits that maximize brood size (e.g. female body
size) in each of these infrequent reproductive episodes, so
that reduced opportunities for reproduction are compensated
by higher fecundity (Godfray et al., 1991; Cox et al., 2003;
Pincheira-Donoso & Tregenza, 2011). On the other hand,
long breeding seasons (towards the tropics) are expected to
select for smaller clutches as females spread the energetic costs
of brood production over time and the risk of mortality by
predation across space (Griebeler et al., 2010; Section III.1d ).
In a modelling-based study, Griebeler et al. (2010) investi-
gated the factors that explain variations in avian fecundity
along latitudinal gradients, focusing on the effects of resource
seasonality, nest predation, and LBS. Their models revealed
that LBS in combination with resource seasonality and pre-
dation explain the observed trends in clutch size, i.e. higher
fecundity towards the poles. However, resource seasonality
is the predominant factor (it can drive the latitudinal trend
by itself), while LBS was found to be a weak independent
predictor of gradients in fecundity and annual fecundity.

Phylogenetic tests of the LBS hypothesis have primarily
been performed on reptile models. In squamates (lizards and
snakes) in particular, the breeding-season effect is expected to
be intensified by viviparity, which compromises reproductive
frequency through prolonged embryo retention within
the mother until development is completed (Blackburn,
2000; Cox et al., 2003; Shine, 2005). This constraining
effect is further reinforced as viviparity predominantly
evolves among species occurring in cold climates (Lee
& Shine, 1998; Hodges, 2004; Shine, 2005; Schulte &
Moreno-Roark, 2010; Pincheira-Donoso et al., 2013), where
oviparity is extremely rare (Shine, 2005; Pincheira-Donoso
et al., 2013). A traditional approach for linking the intensity of
fecundity selection with shorter breeding seasons consists of
investigating variation in the degree of female-biased SSD as
a function of, for example, increasing latitude (or elevation).
Therefore, selection is predicted to favour early reproduction
and higher brood number in species that reproduce fre-
quently, while delayed reproduction accompanied by higher
fecundity is predicted in those that reproduce infrequently
(Tinkle et al., 1970; Fitch, 1978, 1981; Cox et al., 2003).

Two phylogenetic studies have tested this prediction. In
a global-scale analysis (covering 302 species from 18 fami-
lies), Cox et al. (2003) investigated the relationship between
multiple proxies for reproductive frequency and SSD as a
classical indicator of fecundity selection intensity (see Section
IV, for discussion). This study supported the central predic-
tions that female-biased SSD is significantly correlated with
clutch size, reproductive frequency (i.e. number of broods
per season), and reproductive mode (i.e. oviparity/viviparity).
However, tests using the length of reproductive season (i.e.
from earliest observed vitellogenesis to latest oviposition)
and latitude as independent proxies for the strength of
fecundity selection revealed no relationship with SSD. More
recently, Pincheira-Donoso & Tregenza (2011) investigated

the effects that an extreme geographic gradient (combining
latitudinal/elevational climatic effects) exert on variation in
fecundity among species of the prolific Liolaemus lizard radi-
ation. Consistent with Cox et al.’s (2003) study, these authors
failed to observe the predicted negative relationship between
LBS and fecundity. However, Pincheira-Donoso & Tregenza
(2011) argued that these findings may in fact indicate that the
strength of fecundity selection increases as LBS decreases.
Given that colder climates entail further costs to fecun-
dity, such as shorter and unstable days (Pincheira-Donoso,
Hodgson & Tregenza, 2008; Nagy & Grabherr, 2009), and
longer gestation via viviparity (Shine, 2005; Meiri et al., 2013;
Pincheira-Donoso et al., 2013), smaller brood sizes would
in fact be expected in these short breeding-season envi-
ronments. Thus, similar brood sizes between warm- and
cold-environment species may actually imply that stronger
fecundity selection compensates this otherwise expected
decline in fecundity under such adverse conditions. There-
fore, collectively, evidence supporting the LBS hypothesis
remains elusive. Empirical tests are, however, still very few
and the taxonomic coverage of model organisms greatly lim-
ited too, which leaves a clear open niche for future research.

(d ) The ‘bet-hedging strategy’ hypothesis

There is a tendency for the selective demands underlying
macroecological fecundity gradients to be decomposed into
the three above factors (i.e. food seasonality, nest predation
and LBS). According to Griebeler et al. (2010), this ‘divisive’
approach may have limitations as it assumes that these factors
operate independently, while the three can in fact operate
simultaneously to drive the gradient. Thus, Griebeler et al.
(2010) proposed a new integrative hypothesis to explain
the latitudinal fecundity gradient that combines the above
three sources of natural selection. This hypothesis relies on
the observation that food availability determines the total
annual fecundity, which in turn depends on the LBS (and
which in turn determines numbers of breeding attempts
per season), and that nest predation determines how this
total annual fecundity is spread over different broods (e.g.
Gillespie, 1974; Zanette, Clinchy & Smith, 2006; Lehmann &
Balloux, 2007; Lima, 2009; Griebeler et al., 2010). Griebeler
et al. (2010) suggested that (i) the ‘empty slots’ caused in
populations by winter mortality (i.e. Ashmole’s hypothesis)
determine the success of broods in relation to brood size (i.e.
fecundity), and that (ii) brood size, in turn, is a function of nest
predation risk and LBS. Therefore, where food seasonality is
low, LBS is long and predation intensity is high (as in tropical
latitudes), selection favours a ‘bet-hedging’ strategy such that
the risk of predation is spread over multiple smaller clutches
(Yasui, 1998; Farnsworth & Simons, 2001; Griebeler et al.,
2010), and hence, the success of number of broods relative to
their size increases. In colder climates, at higher latitudes, this
strategy is neither viable given that LBS is short, nor selected
for given that nest predation is low. Therefore, this hypothe-
sis predicts fewer and larger broods towards higher latitudes
as a result of the functional interactions among the above
three factors (Griebeler et al., 2010). Despite this hypothesis
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offering an explicitly integrative view, it is not an untested set
of predictions as, in fact, all its components have been inves-
tigated within the framework of the above three hypotheses.
Hence, the bet-hedging hypothesis is mostly a summary
hypothesis than a new hypothesis. Consequently, evidence
for and against the specific components of this hypothesis
comes from a number of studies that have been presented
above which deal with the components of Griebeler et al.’s
(2010) hypothesis (e.g. Ricklefs & Bloom, 1977; Slagsvold,
1982, 1984; Zanette et al., 2006; Jetz et al., 2008).

The bet-hedging prediction in a macroecological context
is not, however, supported in at least one fish species. In the
pipefish Syngnathus leptorhynchus, characterized by male preg-
nancy, reproductive success is optimized by adjustments of
life-history parameters along the latitudinal gradients it occu-
pies in North America (Wilson, 2009). One such adjustment
involves the strategy of female egg transference to males.
In contrast to the predicted pattern, female bet-hedging
increases towards higher latitudes, where eggs are distributed
among more males (Wilson, 2009). It has been interpreted
that this strategy evolves in response to harsher environments
where females aim to reduce costs of mortality by spreading
the probability of mortality across multiple males.

(2) The fecundity gradient paradox

An important underlying generalization of the original
formulation of Moreau–Lack’s rule, and common to most
subsequent studies on it, is that the fecundity gradient
is driven by environmental variation in latitude. Hence,
it can be expected that the environmental mechanisms
that operate on life-history variation along latitudes (e.g.
seasonality, length of breeding season, food availability,
temperature) should operate in similar ways along elevational
gradients, creating an altitudinal fecundity gradient (AFG).
In fact, a number of studies have investigated fecundity
differentials along altitudinal gradients, and as in other
related fecundity phenomena, the focus is heavily biased
towards birds. Remarkably, however, elevational fecundity
variation strongly opposes the latitudinal pattern. With
substantial consistency, fecundity decreases with increasing
elevation (Badyaev, 1997; Badyaev & Ghalambor, 2001; Lu,
2005; Sandercock, Martin & Hannon, 2005; Johnson et al.,
2006; Jin & Liu, 2007; Kleindorfer, 2007; Lu, Gong & Zeng,
2008; Lu et al., 2009, 2010; Lu, 2011; Ramirez-Bautista et al.,
2011), and hence, colder and more seasonal environments
appear to select for smaller brood sizes. Other studies,
however, have revealed no fecundity differentials along
altitudes (Lu, 2008; Bears, Martin & White, 2009), or
larger clutches towards higher elevations (Carey et al., 1982;
Martin, Camfield & Martin, 2009; Camfield, Pearson &
Martin, 2010). Despite this remarkable asymmetry, similar
environmental factors have traditionally been employed to
explain the expression of each (latitudinal and altitudinal)
fecundity gradient separately. Among them, continuous
variation in seasonality of resources, nest predation intensity,
length of breeding seasons, and decreases in environmental
temperatures are regarded as the major sources of selection.

Interestingly, these factors have in common their continuous
variation in similar directions with increasing latitude and
elevation. For example, risk of nest predation has commonly
been noted to decrease towards higher latitudes and
elevations, as do environmental temperatures and the length
of breeding seasons. Therefore, the evolution of these two
fecundity gradients in opposite directions under (apparently)
similar gradients of selection based on the above factors
suggests an appealing life-history paradox.

The opposite responses of fecundity gradients to latitudinal
and elevational gradients suggests that (i) the selective effects
of the above factors interact in different ways with other
selective factors that differ between geographic gradients
in latitude and in elevation (e.g. geographic clines in
atmospheric conditions), to create different forms of net
multivariate selection on fecundity strategies; and (ii) the
evolutionary scenarios offered by geographic variation across
latitudes provides opportunities and constraints to life-history
adaptations that differ from the scenarios offered by
elevational variation, causing opposing life-history responses
to selection. For example, ecological and climatic zones
are replaced over considerably shorter distances as elevation
increases compared to latitude (Bonan, 2008). The most likely
explanation may involve a combination of both factors.

A major potential driver of this fecundity paradox might
be spatial gradients in atmospheric oxygen concentration. It
is broadly known that multiple climatic factors (e.g. temper-
ature) vary in the same direction with increasing latitude and
elevation (Bonan, 2008; Nagy & Grabherr, 2009). By con-
trast, given that oxygen availability declines as a function of
decreasing atmospheric pressure (Nagy & Grabherr, 2009),
its concentrations decline steeply with elevation, but do not
decline with latitude (Nagy & Grabherr, 2009). In addition,
spatial changes in oxygen concentrations are known to exert
major impacts on egg development. For example, it has
consistently been shown in reptiles (Deeming & Ferguson,
1991; Kam, 1993; Warburton, Hastings & Wang, 1995;
Andrews, 2002; Deeming, 2004) and birds (Black & Snyder,
1980; McCutcheon et al., 1982) that low levels of oxygen
concentration reduce developmental success. Aspects such
as embryonic differentiation and growth rates, water uptake,
duration of incubation, growth of the chorioallantoic mem-
brane, egg survival, and hatchling size are known to be nega-
tively affected by hypoxia (Andrews, 2002; Parker, Andrews
& Mathies, 2004). Among Sceloporus lizards, for example, suc-
cessful development depends on high levels of in utero oxygen
(Andrews & Rose, 1994; Andrews, 2002; Parker et al., 2004;
Parker & Andrews, 2006). Also, it has been suggested that
transitions from oviparity to viviparity in reptiles may be
promoted by declines in atmospheric oxygen (Hodges, 2004;
Lambert & Wiens, 2013), and that in turn, viviparity reduces
reproductive opportunities, thus promoting larger clutches
(Cox et al., 2003; Pincheira-Donoso & Tregenza, 2011).
Finally, it has been observed that development can be com-
promised in larger clutches given that oxygen concentrations
decline towards their centre (Ackerman, 1977; Ackerman &
Lott, 2004). Moreover, rates of oxygen decline versus CO2
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increases in turn increase with clutch size (Ackerman & Lott,
2004). Consequently, all these factors taken together suggest
that fecundity may vary differently along elevational and
latitudinal gradients in response to the effects that differential
gradients of oxygen have on the developmental success of
eggs. Alternatively, the paradox may be the result of incor-
rect generalizations about geographic variation in the factors
predicted to cause it. For example, as stated above (Section
III.1b), smaller clutches are predicted in high-predation envi-
ronments, and predation intensity tends to decline with
latitude. However, predation does not necessarily decline
with elevation. For instance, while clutch size can increase
with elevation when predation declines towards higher alti-
tudes (Camfield et al., 2010), higher predation towards higher
altitudes has been found to promote smaller clutches with
increasing elevation (Sandercock et al., 2005; Lu, 2011).
Therefore, although the pattern is inconsistent along the same
geographic gradients (because the factors behind the patterns
do not vary consistently with elevation), the mechanistic effects
of the factors on fecundity clines are strongly consistent (i.e.
smaller broods towards higher-predation environments).

Whatever the best general explanation for both fecundity
gradients, it seems clear that accounting for their expression
is far more complex than currently appreciated by studies
focusing separately on either of them. Indeed, this has
been the consistent tendency, given that both the LFG
and AFG are largely (and implicitly) treated as unconnected
phenomena. Therefore, the mechanism underpinning this
paradox remains an open question.

IV. FECUNDITY SELECTION AND THE
EVOLUTION OF SEXUAL DIMORPHISM

The evolution of SSD is a complex phenomenon driven by
the asymmetrical effect of intersexual antagonistic selection
(IAS) operating differentially on the phenotype of males and
females (Andersson, 1994; Blanckenhorn, 2005; Fairbairn,
2007; Cox & Calsbeek, 2009), or by their asymmetric
non-genetic responses to context-specific environmental
demands that influence body size development (Cox et al.,
2003; Cox & Calsbeek, 2010). The adaptive evolution
of SSD has traditionally been explained via sex-specific
(mostly male-specific) positive directional sexual selection
(Andersson, 1994; Cox et al., 2003; Fairbairn et al., 2007), dis-
ruptive natural selection (Shine, 1989), directional fecundity
selection on female traits (Darwin, 1874; Cox et al., 2003), or
a combination of different mechanisms of selection operating
in opposing directions between the sexes (Zamudio, 1998;
Olsson et al., 2002; Pincheira-Donoso & Tregenza, 2011).
The classical hypothesis of fecundity-selection-driven SSD
was originally formulated by Darwin (1874) to explain
the evolution of female-biased SSD. According to this
hypothesis, fecundity selection promotes increased fecundity
through a directional effect on female body size in species
where reproductive output is compromised (see Section III
for details). This female-specific effect is broadly assumed

to create antagonistic selection on body size between
the sexes, resulting in female displacements from males,
and ultimately, in female-biased SSD (Cox et al., 2003;
Pincheira-Donoso & Tregenza, 2011).

The fecundity selection hypothesis of SSD has been
invoked extensively to explain the evolution of larger
females in lineages where the direction (whether male- or
female-biased) and magnitude of SSD vary among species.
Indeed, the view that the magnitude of female-biased SSD
reflects the strength of fecundity selection on female body size
has become a traditional assumption of the fecundity selec-
tion hypothesis of SSD. Under this view, comparatively larger
females indicate stronger intersexual antagonistic selection
caused by stronger fecundity selection. For example, Shine’s
(1988) main assumption when analysing the underlying ratio-
nale behind fecundity selection was, in fact, that females
evolve larger body size than males when fecundity selection
operates. However, the question is whether the expression
and extent of female-biased SSD can be taken as a reliable
signal of the action and strength of fecundity selection. A
number of studies have suggested that the action of (even
strong) fecundity selection on female body size does not neces-
sarily translate into female-biased SSD (see below for details),
or that this form of SSD may result from the antagonistic
effects of selection mechanisms other than fecundity selec-
tion (Zamudio, 1998; Olsson et al., 2002; Pincheira-Donoso &
Tregenza, 2011). In this latter case, theory suggests that larger
females are not only the result of female-specific positive
directional selection on body size, but can also be the result
of negative directional selection on male size (Singer, 1982;
Andersson, 1994; Zamudio, 1998). For example, Zamudio
(1998) observed that female body size correlates positively
with fecundity in Phrynosoma lizards with female-biased SSD.
However, her phylogenetic evidence revealed that this form
of SSD was more likely driven by negative directional selec-
tion on male size for earlier maturation. Similarly, Olsson
et al. (2002) showed that strong female-specific fecundity
selection does not alter pronounced male-biased SSD in a
lizard (see Section IV.1 for details). In another study (Wilson,
2009), a similar example was presented. Although body size
in the pipefish Syngnathus leptorhynchus is sexually monomor-
phic, fecundity selection on male size (via male pregnancy; see
Section VI) has been suggested to be strong (Hoffman et al.,
2006; Wilson, 2009). Interestingly, towards higher latitudes
where waters become colder, male brood pouch volume
increases via increases in male body size. This size gradient
counterbalances the reduced opportunities for reproduc-
tion caused by extended brooding periods in cold climates
and thus maintains male reproductive success across the
species range. Consequently, in line with other observations,
fecundity selection does not drive SSD in these fish.

The problem with treating SSD as an indicator of fecundity
selection is further revealed by perspectives in which fitness is
broken up into its three fundamental components (survival,
mating success and fecundity). Firstly, although (sexual)
selection for mating success mostly predicts sex-specific
effects on males, these effects can (as discussed above)
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select for smaller males, or in fact, for female traits when
male mate choice operates (Andersson, 1994). Therefore,
female-biased SSD can be driven by sexual selection.
Second, the role of natural selection in the evolution
of sexual dimorphism has increasingly been appreciated
(Shine, 1989; Butler, Schoener & Losos, 2000; Temeles
et al., 2000; Losos, Butler & Schoener, 2003; Fairbairn
et al., 2007; Pincheira-Donoso et al., 2009; Temeles, Miller &
Rifkin, 2010; Meiri et al., 2014). One central attribute of the
ecological hypothesis of sexual dimorphism is that it does not
predict a predominant direction in the evolution of SSD (i.e.
whether it is mostly male-biased or female-biased). Instead,
it only predicts that intersexual resource competition creates
frequency-dependent natural selection for sexes to adapt
to alternative ecological resources (e.g. Bolnick & Doebeli,
2003), and thus, sex-specific body sizes are pushed apart in the
direction of any available niche space. Therefore, both males
and females are in theory equally likely to evolve larger body
size, or to remain monomorphic for size if other ecologically
relevant (body shape) traits allow divergent access to different
resources. Finally, although fecundity, natural and sexual
selection can explain the evolution of female-biased SSD, a
recent study showed that sexual selection is the predominant
driver of sexual dimorphism across animals in general (Cox &
Calsbeek, 2009). This finding, in line with previous evidence
that sexual selection exceeds other selection mechanisms
in the wild (Hoekstra et al., 2001; Kingsolver et al., 2001;
Blanckenhorn, 2007), relegates the role of fecundity selection
on sexual dimorphism to a secondary level. Remarkably,
however, the role of natural selection was found to be even
weaker, hence retaining fecundity selection as the second
most important driver of SSD after sexual selection, which
prevails as the primary driver (Cox & Calsbeek, 2009).

Collectively, although the role for fecundity selection in
the evolution of female-biased SSD is broadly recognized
(Cox et al., 2003; Shine, 2005; Cox & Calsbeek, 2009;
Pincheira-Donoso & Tregenza, 2011), this form of SSD
should not be treated as an indicator of the action or strength
of fecundity selection. Thus, female-biased SSD does not
necessarily imply the action of fecundity selection, while the
absence of female-biased SSD does not imply that fecundity
selection is not in operation (Singer, 1982; Zamudio, 1998;
Olsson et al., 2002; Pincheira-Donoso & Tregenza, 2011).
Similarly, in species in which fecundity selection operates on
males (Section VI), SSD is not the norm and hence the same
principle suggested above would expand into these situations
of reversed sex roles.

(1) Sexually antagonistic fecundity selection on
body regions

Sexual dimorphism is not the same as SSD. As argued
earlier, the concept of fecundity selection has expanded from
a body-size-centred view to a more evolutionarily broad (and
realistic) idea that involves any component of the phenotype
that enhances fitness via adjustments in fecundity (Section
II). Fecundity selection is, therefore, predicted to target
specific body regions rather than overall size, and when

these effects are sexually antagonistic, sexual dimorphism
for specific traits is likely to evolve (e.g. Olsson et al.,
2002; Fairbairn et al., 2007; Winkler et al., 2012; Scharf &
Meiri, 2013). A number of examples of sexual dimorphism
presumed to be driven by fecundity selection exist. For
example, in large-scale studies covering broad diversities of
lizards, it has been found that fecundity selection targets
female abdomen length specifically, where embryos are kept
during development (Braña, 1996; Scharf & Meiri, 2013).
Similarly, using quantitative genetic measures of sexually
antagonistic selection, Olsson et al. (2002) revealed strong
evidence for sex-specific directional fecundity selection on
female abdomen length in the lizard Niveoscincus microlepidotus.
Interestingly, male abdomen length was also found to be
under selection, but negative directional sexual favouring
shorter trunks, which are potentially advantageous for
male–male contests (Olsson et al., 2002). Despite such clear
effects of fecundity selection on females, male body size is
considerably larger in this species (Olsson et al., 2002), which
reinforces the view that fecundity selection can be strong, yet
negligible in its role in driving female-biased SSD.

Additional examples of region-specific selection come
from pipefish species (genus Syngnathus), in which sex roles
are reversed and male pregnancy occurs. In these fish, it
has been shown that fecundity selection targets male- and
female-specific body regions. Female pipefish transfer the
eggs into male-specific brooding pouches located on their
tail or abdomen (Wilson et al., 2001; Hoffman et al., 2006;
Wilson, 2009; Winkler et al., 2012). Thus, fecundity in
females is limited by abdomen volume, while in males brood
size is a function of pouch size (Hoffman et al., 2006; Winkler
et al., 2012). As expected, fecundity selection has been shown
to target male brood pouches and female abdomens indepen-
dently, thus causing clear region-specific sexual dimorphisms
(Hoffman et al., 2006; Wilson, 2009; Winkler et al., 2012).

V. THE FEMALE MULTIPLE-MATING
COMPONENT OF FECUNDITY

Modelling the fitness dynamics of fecundity selection is a
complex task given that fecundity is not simply a function of
female traits that facilitate larger broods (e.g. body size), but
a function of the pairing between males and females. Essen-
tially, individuals do not have fecundity, but mating partners
do (Pollak, 1978; Rice, 2004). Therefore, when modelling
fecundity selection, fitness is assigned to mating pairs. In
addition, the evolutionary dynamics of selection for fecundity
rely on the tight dependence between selection for viability
and for mating success, and hence, fecundity selection often
reflects the interaction between natural and sexual selection
(e.g. Badyaev & Ghalambor, 2001; Hoekstra et al., 2001).

Rice (2004) modelled the fitness dynamics of fecundity
assuming mating scenarios represented by one female
and one male only (see also Pollak, 1978). However, this
assumption is a simplification of the dynamics of selection
from variance in fecundity within populations, as it is broadly
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recognized that female multiple-mating (both remating and
polyandry) influences fitness through increases in fecundity
in a wide diversity of organisms, from invertebrates to
vertebrates (Gwynne, 1984; Ridley, 1988; Madsen et al.,
1992; Karlsson, 1998; Arnqvist & Nilsson, 2000; Eady,
Wilson & Jackson, 2000; Evans & Magurran, 2000; Wiklund,
Karlsson & Leimar, 2001; Woolfenden, Gibbs & Sealy, 2002;
Kamimura, 2003; Vahed, 2003; Lewis, Cratsley & Rooney,
2004; Torres-Vila, Rodriguez-Molina & Jennions, 2004;
Bjork & Pitnick, 2006; Schwartz & Peterson, 2006; Engqvist,
2007; Gershman, 2007; LaDage et al., 2008; Lorch, Bussiere
& Gwynne, 2008; McNamara et al., 2008b; Slatyer et al.,
2012). This view is reinforced by the overwhelming evidence
that female multiple mating is common in a wide diversity of
species (Birkhead & Møller, 1998; Simmons, 2001; Cornell &
Tregenza, 2007). Several studies suggest that this relationship
is driven by a number of male traits that increase fecundity
through increases in oogenesis and ovulation rates, such as
nuptial gifts, courtship feeding, and non-spermatic beneficial
components present in ejaculates (Simmons, 2001; Fedorka
& Mousseau, 2002; Gillott, 2003; Poiani, 2006; Alonzo &
Pizzari, 2010). Interestingly, these fecundity-stimulator traits
are also known to play important roles in differential success
in competition over mates. Therefore, the above observations
suggest an adaptive basis for male-driven fecundity, and the
complex evolutionary dynamics behind variance in fecundity
as the result of interactions between sexual and fecundity
selection. However, higher fecundity in polyandrous females
has also been suggested simply to result from access to more
sperm rather than to any fecundity-enhancing effects of male
traits (Evans & Magurran, 2000).

The adaptive basis of the relationship between fecundity
and multiple-mating has recently been reinforced by math-
ematical theory based on models assuming male and female
prezygotic investment in offspring. Alonzo & Pizzari (2010)
found that a strong effect of male fecundity-stimulator traits
on female fecundity can shift the coevolutionary dynamics
of female remating and male ejaculate expenditure from
conflict to cooperation when mutual fitness is enhanced by
increased fecundity. This model predicts that strong fecun-
dity stimulation promotes cooperation between and within
the sexes because a male fertilizes more eggs when mating
with a promiscuous female. Therefore, when the costs of
remating are compensated by the fecundity-mediated fitness
benefits of promiscuity, selection for remating will prevail.
However, in many other species, polyandry has negligible
or no influence on fecundity enhancement. In these cases,
conflict can be expected because the mating role of each
male (i.e. first- or second-male precedence) will result in one
of them taking advantage of the ejaculates of the other (e.g.
Parker, 1998; Hodgson & Hosken, 2006), and because remat-
ing will compromise female fitness (Alonzo & Pizzari, 2010).
Finally, when the intensity of selection on female remating
avoidance opposes selection for remating because fecundity
is not enhanced or because it compromises survival, males
can cooperate among themselves while interacting in conflict
with females (Alonzo & Pizzari, 2010). Consequently, this

theory suggests that the interaction of fecundity with other
components of fitness (e.g. survival) can result in cooperation
over mating, in contrast to traditional expectations that
sexual conflict necessarily arises from female remating.

VI. FECUNDITY SELECTION ON MALES

Given that fecundity is predominantly limited by female
capacity to produce ova and to provide embryos with the
space they need for development, fecundity selection has
historically been deemed as a female-specific force (Darwin,
1874; Williams, 1966; Roff, 2002; Fairbairn et al., 2007).
However, despite this traditional view, a number of studies
suggest that fecundity selection also operates on males when
their phenotypes exert a direct effect on brood size (Savalli
& Fox, 1998; Wilson, 2009; Winkler et al., 2012). Fecundity
selection on males occurs primarily in species in which some
extent of sex-reversed roles has evolved (i.e. any form of ‘male
pregnancy’). In these organisms, eggs are transferred from the
mothers into male structures specialized in retention of the
embryos until they complete development (Cei, 1962; Kraus,
1989; Kolm, 2002; Winkler et al., 2012; Vitt & Caldwell,
2014). Cases are in fact abundant. For example, numerous
amphibian species have evolved male ‘pregnancy traits’,
such as back skin forming brood chambers that serve as
nests (Greven & Richter, 2009; Fernandes et al., 2011; Vitt &
Caldwell, 2014), inguinal pouches (Ehmann & Swan, 1985),
or legs adapted to carry developing eggs (Marquez, 1993).
Also, a quite unique case of male pregnancy is ‘neomely’.
This strategy is exclusive to the Chilean frogs of the genus
Rhinoderma, in which males have evolved vocal sacs where
eggs are retained until they complete development, while the
embryos are also provided with food (Cei, 1962; Goicoechea,
Garrido & Jorquera, 1986; Vitt & Caldwell, 2014). Similarly,
a number of fish species show male body regions adapted for
pregnancy. For example, paternal mouthbrooding provides
embryos with ideal environments to complete development.
In the species Pterapogon kauderni, Kolm (2002) reported that
clutch size is a function of male body size. Thus, paternal
phenotype plays a central role in fecundity in this fish. Also,
in the Syngnathus pipefish, males have evolved specialized
body pouches (on either the tail or abdomen) into which eggs
are transferred by females to be fertilised and retained for
development (Breder & Rosen, 1966; Wilson, 2009; Winkler
et al., 2012). Interestingly, it has been shown in these fish that
fecundity selection operates differentially on egg-brooding
structures between the sexes, that the male skeletal structures
that sustain brooding pouches have significant additive
genetic variation, and that they are heritable and modular
in the way they vary relative to other body regions (Hoffman
et al., 2006). Similar cases exist in insects. For example,
availability of male backspace in belostomatids (waterbugs),
where egg-brooding takes place following transference from
females, has been shown to limit female reproductive
outcome directly (Kraus, 1989; Kruse, 1990).
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VII. CONCLUSIONS

(1) Although fecundity selection has traditionally been
treated as a force that influences fitness via increases in
fecundity caused by larger body size in females, numerous
studies have shown that this form of selection is not
necessarily female specific (e.g. it can target males in
species with sex-reversed roles), and that it can also benefit
fitness through reductions of brood size, or by targeting
specific traits (e.g. abdomen volume) that may not result
in larger overall body size. These expansions in the way
fecundity selection operates in nature demand a redefinition
of fecundity selection as a general mechanism that increases
reproductive success through any effect on fecundity, caused
by any trait, in either sex.

(2) The study of fecundity patterns and drivers under
a macroecological perspective embodies a promising area
for future research. Given that reproduction is energetically
costly, the interaction between organisms and ecological
pressures (e.g. food availability, predation) plays a central
role in spatial and temporal variations in fecundity. As
a result of both theoretical and empirical studies, it has
become evident that predictable macroecological patterns
of fecundity variation exist in nature (e.g. the widely known
phenomenon we term Moreau–Lack’s rule). These patterns,
which primarily express along latitudinal and elevational
gradients, are explained by a number of ecological factors
that vary with geography, such as seasonality, predation
intensity, and opportunities for reproduction determined
by length of breeding season. Although some aspects of
the macroecology of fecundity have been shown extensively
(mostly the spatial distribution of ‘transient fecundity’), many
other areas which link directly or indirectly to fecundity
selection (e.g. other expressions of fecundity such as annual
fecundity, the spatial distribution of sexual dimorphism, the
implications of climate change on fecundity patterns, the
distribution of fecundity plasticity) remain fundamentally
unexplored. In addition, the overwhelming majority of
research (especially studies testing for specific mechanisms
driving the pattern) has focused on birds. Therefore,
macroecology offers new avenues to investigate broadly
explored patterns at large spatial and taxonomic scales, while
it is imperative to assess empirically the generality of these
phenomena in a wider diversity of organisms. Both small-
and large-scale studies are required in animals other than
birds to quantify the contribution of the many potential
factors suggested to affect fecundity along geographic
gradients.

(3) Fecundity selection has, since Darwin (1874), been
considered as one of the primary explanations for the
evolution of female-biased SSD. However, given that
fecundity selection often targets body regions that directly
affect fecundity, and given that these traits may not
necessarily affect overall female body size, we argue that
the link between female-biased SSD and fecundity selection
is not the generality. Indeed, it has been shown that strong

fecundity selection can operate on females of species in which
strong male-biased SSD exists. Finally, female-biased SSD
can also result from male-specific selection for smaller body
size. Therefore, we conclude that the action and strength
of fecundity selection should not be estimated based on the
extent of female-biased SSD, and hence, that the absence
of this form of SSD should not rule out the action and
strength of fecundity selection. Thus, selection experiments
on sex-specific traits, including body size (e.g. see Olsson
et al., 2002) is a much-needed future research avenue to
estimate quantitatively the influence of fecundity selection
on the expression of sexual dimorphism.
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