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ABSTRACT
An important driver of the evolution of animal coloration is sexual selection operating on traits that are used to
transmit information to rivals and potential mates, which has a major impact on fitness. Reflectance spectrometry has
become a standard color-measuring tool, especially after the discovery of tetrachromacy in birds and their ability to
detect UV light. Birds’ plumage patterns may be invisible to humans, and therefore the establishment of reliable and
quantitatively objective ways of assessing coloration not dependent on human vision is a technical need of primary
importance. Plumage coloration measurements can be taken directly on live birds in the field, or in the laboratory (e.g.,
on collected feathers). However, which of these 2 approaches offers a more reliable, repeatable sampling method
remains an unsolved question. Using a spectrophotometer, we measured melanin-based coloration in the plumage of
Barn Swallows (Hirundo rustica). We assessed the repeatability of measures obtained with both traditional sampling
methods to quantitatively determine their reliability. We used an ANOVA-based method for calculating the
repeatability of measurements from 2 years separately, and a GLMM-based method to calculate overall adjusted
repeatabilities for both years. The results of our study indicate a great disparity between color measurements obtained
using both sampling methods and a low comparability across them. Assuming that measurements taken in the field
reflect the real or ‘‘true’’ color of plumage, we may conclude that there is a lack of reliability of the laboratory method
to reflect this true color in melanin-based plumages. Likewise, we recommend the use of the GLMM-based statistical
method for repeatability calculations, as it allows the inclusion of random factors and the calculation of more realistic,
adjusted repeatabilities. It also reduces the number of necessary tests, thereby increasing power, and it allows easy
calculation of 95% CIs, a measure of the reliability and precision of effect-size calculations.

Keywords: adjusted repeatability, bird plumage, colorful displays, sexual selection, spectrophotometry,
tetrachromacy, ultraviolet

Análisis cuantitativo de la evaluación objetiva del color de las plumas: las mediciones en el laboratorio
no reflejan el verdadero color del plumaje

RESUMEN
La selección sexual que opera en rasgos usados para transmitir información a rivales y potenciales parejas guı́a la
evolución de la coloración en animales de una forma determinante. Esto tiene un impacto importante en la
adecuación biológica. La espectrometrı́a de reflectancia se ha convertido en una herramienta muy común para medir
el color, especialmente tras el descubrimiento de tetracromı́a en las aves y su habilidad para detectar la luz ultravioleta.
Los patrones del plumaje de las aves pueden ser invisibles para los humanos y, por eso, el establecimiento de formas
fiables y cuantitativamente objetivas de evaluar la coloración no dependientes de la visión humana representa una
necesidad técnica de vital importancia. Las mediciones de la coloración del plumaje pueden ser efectuadas
directamente en aves vivas en el campo o en el laboratorio (p. ej. en plumas colectadas). Sin embargo, cuál de estos
dos enfoques ofrece un método de muestreo más fiable y repetible sigue siendo una pregunta sin resolver. Usando un
espectrofotómetro, medimos la coloración basada en melanina en el plumaje de la golondrina común (Hirundo
rustica). Evaluamos la repetibilidad de las mediciones obtenidas con ambos métodos tradicionales de muestreo para
determinar de modo cuantitativo su fiabilidad. Usamos el método estadı́stico basado en el ANOVA para calcular la
repetibilidad de las mediciones de dos años por separado, y el método basado en modelos lineales mixtos
generalizados (GLMM) para calcular las repetibilidades ajustadas totales para ambos años. Los resultados de nuestro
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estudio indican una gran disparidad entre las mediciones de color obtenidas usando ambos métodos de muestreo y
una baja comparabilidad entre ellas. Asumiendo que las mediciones efectuadas en el campo reflejan el color real o
«verdadero» del plumaje, podemos concluir que hay una falta de fiabilidad del método de laboratorio para reflejar el
color real de los plumajes basados en melanina. Del mismo modo, recomendamos el uso del método estadı́stico
basado en GLMM para los cálculos de repetibilidad, ya que permite la inclusión de factores aleatorios y el cálculo de
repetibilidades ajustadas, más realistas. También reduce el número de pruebas necesarias, por consiguiente
aumentando la potencia estadı́stica, y permite calcular fácilmente los intervalos de confianza (95% CI), una medida de
la fiabilidad y precisión de los cálculos del tamaño del efecto.

Palabras clave: despliegues coloridos, espectrofotometrı́a, plumaje de las aves, repetibilidad ajustada, selección
sexual, tetracromı́a, ultravioleta

INTRODUCTION

Mate-choice theory predicts that elaborately ornamented

males should provide female birds with direct (if

ornamental traits reflect individual condition, useful

individual attributes, or somatic quality independent of

condition) and/or indirect fitness benefits (‘‘good genes’’ or

attractiveness for offspring, as conspicuous and costly male

traits indicate highly heritable viability; Pomiankowski

1987, Andersson 1994, Garamszegi et al. 2006). Therefore,

birds with more elaborate, colorful displays are expected to

enjoy a selective advantage, given their higher mating

chances (Andersson 1994, Hill 2006).

Color vision involves the capacity to discriminate among

different wavelengths of light, independent of their

intensity (Kelber et al. 2003, Cuthill 2006). Although the

coloration traits that are expressed in animals have proven

to be essential components to our understanding of the

nature of selection, and sexual selection in particular, only

relatively recently have scientists come to appreciate the

importance of a systematic understanding of both the

function and evolution of coloration, as well as the

mechanisms that underpin it (Hill and McGraw 2006).

Birds in particular, due to their colorful displays and the

role of their color signals in fitness differentials, have

traditionally been employed as prime model systems to

understand the causes and implications of color evolution.

However, the mechanisms of color vision and spectral

information processing needed to understand how birds

perceive colors remain areas with more questions than

answers.

Two traditional ways of assessing bird plumage color-

ation with spectrophotometers have been reported in the

literature. Measurements may be taken directly on the

bird, applying the probe of the spectrophotometer to

plumage patches as they occur in situ (Senar et al. 2002,

Bize et al. 2006, Herrera et al. 2008, Catoni et al. 2009,

Doucet and Hill 2009, Del Cerro et al. 2010). Alternatively,

measurements may be taken in the lab, using feather

samples collected in the field, applying the probe to

‘‘plumage patches’’ created by mounting these feathers on a

flat surface in a way that mimics the original plumage

structure (Cuthill et al. 1999, Keyser and Hill 2000, Perrier

et al. 2002, McGraw et al. 2004, 2005, Safran and McGraw

2004, Komdeur et al. 2005, Safran 2007, Vaquero-Alba

2011).

Repeatability is a useful statistical tool to assess the

accuracy of phenotypic measurements, as it reflects the

quality of the data (Garamszegi et al. 2006). The most

common measure of repeatability, or, more precisely, the

coefficient of intraclass correlation (ri), can be formally

defined as the proportion of the total variance explained by

differences among groups (or among measurements of the

same subject); in other words, the proportion of the

variance not due to measurement error or phenotypic

flexibility (Lessells and Boag 1987, Nakagawa and Schiel-

zeth 2010):

ri ¼ r2
a=ðr2

a þ r2
eÞ;

where r2
a is the between-group variance and r2

e is the

within-group variance, and the sum of both comprises the

total phenotypic variance (Sokal and Rohlf 1995).

Despite the popularity of the use of spectrophotometers

for color assessment and the growing number of studies on

bird coloration, few studies have rigorously assessed the

consistency of both methods for measuring the coloration

of plumage patches and the repeatability of results

obtained when using either one or the other. For example,

Figuerola et al. (1999) analyzed the reliability of the

measurements obtained by using a colorimeter to quantify

the plumage coloration of 3 different passerine species.

Senar et al. (2002) assessed the repeatability of the

measurements taken on live birds in the field, and Perrier

et al. (2002), Safran and McGraw (2004), Komdeur et al.

(2005), and Safran (2007) did the same for measurements

taken in the lab. Meadows et al. (2011), using Anna’s

Hummingbirds (Calypte anna) as a model species,

presented a technique for measuring iridescent coloration

in animals that maximizes repeatability. For most studies,

however, researchers simply adopt 1 of the 2 methods to

measure plumage coloration and assume that the chosen

method is suitable for their purposes, but they do not really

assess the reliability of the method nor try to quantify the

possible measurement error that they may be incurring. To

the best of our knowledge, a study by Quesada and Senar
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(2006) is the only one that has actually compared both

measurement methods. The authors did so using caroten-

oid-based plumage coloration in Eurasian Great Tits

(Parus major). Overall, they found high values of

repeatability for both methods separately and moderate-

to-high values for the comparison between them.

Measuring feather coloration directly on birds in the

field has practical limitations. For example, the equip-

ment may be uncomfortable to carry into the field and

fragile (Berggren and Merilä 2004), and the manipulation

times of the birds may be higher. However, as patch

coloration is not homogeneous, this method may better

reflect the ‘‘true’’ variation of coloration within a patch.

Collecting feathers captures just a part of the total

variation, and, obviously, color in collected feathers is

more homogeneous than in the whole patch. In their

study, Quesada and Senar (2006) assumed that the

plumage patches on the live bird were the ‘‘true’’ color

values, and their work aimed to check whether a few

collected feathers could accurately reflect that true color.

It is obvious that color measurement is not totally

unbiased and accurate, which is why it is important to

make sure that measurements taken using both methods

separately are reasonably repeatable (indicative of low
measurement error). Likewise, high repeatability across

methods may indicate that collected feathers accurately

reflect the ‘‘true’’ color of the original plumage patches to

a reasonable extent.

Until recently, the most common ways used to estimate

the repeatabilities of data with Gaussian errors were the

correlation-based method (Sokal and Rohlf 1995) and the

ANOVA-based method, frequently used by behavioral and

evolutionary ecologists (Donner 1986, Lessells and Boag

1987). However, Nakagawa and Schielzeth (2010) devel-

oped an innovative R-based function for calculating

GLMM-based repeatability estimates, which allows for

confounding variables to be factored out and calculates the

confidence intervals (CIs) for each repeatability calcula-

tion, inferred from distributions of repeatabilities obtained

by parametric bootstrapping. We think that this new way

of calculating repeatabilities is extremely promising and

may become the most widespread method used by

biologists worldwide, for 2 main reasons: First, it allows

for the calculation of repeatabilities from data with

Gaussian and also non-Gaussian error distributions,

thereby greatly widening the range of the types of data

for which repeatabilities can be estimated. Second, it

makes it possible to include random factors in repeatability

calculations. As a result of this, adjusted repeatability

values can be estimated, which are more realistic as they

account for more potential sources of variance. Also, the

number of necessary tests for calculating repeatability is

smaller, therefore decreasing the probability of type I

errors.

The aims of our study were twofold. First, we compared

2 different methods of measuring melanin-based plumage

ornamentation. The methods consisted of measuring

feather coloration either directly on the bird in the field

or on feather samples in the lab. Second, we compared 2

statistical methods to assess repeatability itself; one

method was ANOVA-based, very popular among behav-

ioral and evolutionary ecologists and widely used, and the

other was GLMM-based, newly developed and highly

promising. Our first aim was to determine whether

collecting feathers from birds and measuring their

coloration in the lab could accurately reflect, to a

reasonable extent, the true color of the plumage patch

from which the feathers were collected (i.e. the values that

we would get by measuring coloration directly on the bird

in the field). Our second aim was to test the suitability and

accuracy of the relatively new, GLMM-based statistical

method, analyze its advantages, and check whether it has

the potential to become the new standard method for

measuring repeatability, at least in the field of behavioral

and evolutionary ecology. We hypothesized that measuring

coloration on feather samples in the lab would provide at

least moderately representative measures of color values

compared with the values obtained by measuring colora-

tion directly on bird plumage patches, in accordance with

the results obtained by Quesada and Senar (2006) for

carotenoid coloration. Also, we predicted that we would

achieve more realistic, as well as more robust, precise, and

informative, results with the GLMM-based statistical

approach, making it a very likely candidate to become
widespread in the future, as it allows for the analysis of a

wider range of data types and the introduction of more

sources of variation into each analysis, thereby yielding

more realistic repeatability estimates. We used the

European subspecies of the Barn Swallow (Hirundo rustica

rustica) as a model species. To the best of our knowledge,

this is the first time that GLMM-based repeatability

estimates have been used to assess the reliability of

melanin-based plumage coloration measurements and to

compare the reliability of measurements taken in the field

vs. in the lab.

METHODS

Fieldwork and Data Collection
Plumage color measurements in the field took place

between July 7 and 12 in 2009, and between June 2 and 24

in 2010. As the data collection period was very short

(between 6 and 23 days), we avoided any possible color

degradation effects. Measurements were carried out in

multiple sites, mostly farmlands, around the Falmouth area

in Cornwall, UK (Appendix Table 5). We caught 59 adult

European Barn Swallows (21 in 2009 and 38 in 2010) using

mist nets, banded them, took morphometric measure-
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ments, quantified their plumage reflectance spectra in the

field, and collected feather samples for subsequent

assessment in the lab. After collection, feather samples

were placed into opaque paper envelopes, and these

envelopes were sealed and stored in the dark (to minimize

color degradation) until the end of the field season. Color

quantification of feather samples in the lab took place

between November 13 and 19 in 2009, and between

September 20 and 28 in 2010.

For color assessment, we used a USB2000 spectropho-

tometer (Ocean Optics, Dunedin, Florida, USA) and a

xenon flash lamp (Ocean Optics). Before using the

spectrophotometer, we calibrated it by setting the white

and black references (i.e. we ‘‘told’’ the machine which

color we wanted it to consider as the 100% reflectance

(white) standard and the 0% reflectance (dark) standard),

so that the rest of the color measurements were

determined in relation to these maximum and minimum

possible reflectance values. We used a WS-1 SS Diffuse

Reflectance Standard, which is a diffuse white plastic that

is .98% reflective from 250 to 1500 nm, as the white

reference (100% reflectance), and a piece of black velvet as

the dark standard (0% reflectance) to correct for the noise

when no light reaches the sensor. At the far end of the
reflection probe and light source, we put a nonreflective

black sleeve. As we were interested in measuring the light

that was diffusely reflected by the plumage, the sleeve was

cut in a 458 angle to minimize the mismeasurement

derived from the specular reflection of white light reaching

the sensor (Andersson and Prager 2006). Integration time

was set to 100 msec, the number of spectra averaged was 1,

and electric dark correction was enabled.

Using the spectra acquisition software package OOIBase

(Ocean Optics), we measured the reflectance of 4 body

regions, namely the throat, breast, belly, and vent of each

bird. As noted above, we measured plumage coloration on

birds in the field and then collected feathers for

subsequent measurement in the lab. There is quite a

strong consensus regarding the delimitation and naming of

the different regions or patches of birds’ plumages (see, for

example, Ali 1941, Forshaw 1973, Andersson and Prager

2006, and Moore et al. 2012). We used figure 2.10 from

Andersson and Prager (2006) as a guide, but the limits of

each region are quite consistent throughout the literature,

with only some slight variation in names (some sources use

‘‘abdomen’’ instead of ‘‘belly,’’ and the patch that we call the

‘‘vent’’ is often termed the ‘‘undertail coverts’’ or ‘‘crissum’’).

Using these standardized and perfectly delimited regions

as our patches, in 2010 we placed the probe in a location as

central to the patch as possible, and collected the feathers

from the same point. In 2009, however, this was done

differently, with measurements in the field taken in 3

separate locations within the patch, each of them

approximately as far from the center of the patch as from

the outer limit and as far as possible from each other, while

feathers for lab measurements were collected from the

center of the patch.

The number of feathers collected was always a

minimum of 5, although normally ~10 whenever possible

within methodological constraints. For plumage color

quantification in the lab, we mounted the feathers one

on top of another in an attempt to simulate the original

pattern found on live birds, consistently following the

method detailed in Quesada and Senar (2006; see figure 2

for a visual depiction). We mounted the feathers on a piece

of black velvet to avoid background noise. In both field and

lab procedures, the 2nd and 3rd measurements were made

after removing the reflection probe and light source and

placing them again on the color patch. I. Vaquero-Alba

took all the measurements.

Due to the way in which data were collected, the 3

plumage coloration measurements taken in the field in

2009 covered a wider area of each plumage patch than the

measurements made on feather samples, which were

restricted to the area covered by the sample of feathers

plucked from each patch of each individual. In 2010,

however, the 3 field measurements were taken in

approximately the same plumage area for each patch,

and the feathers that were collected for lab measurements

were plucked from approximately the same area from

which field measurements were taken.

We used the spectral data that we obtained from the

spectrophotometer to calculate brightness, chroma, and

hue, parameters generally used to quantify color, as well as

UV chroma, a measure of spectral purity. For the
calculation of all color variables, using the equations in

Endler and Mielke (2005) and the mathematical software

Matlab (The MathWorks, Natick, MA, USA), we obtained

the spectral sensitivity functions of the cones corrected for

the cut points of oil droplets, calculated the quantal catch

for each photoreceptor, and converted those quantal

catches into dimensional color space coordinates in a

tetrahedral color space (Figure 1). Cone sensitivities and

oil droplet cut points were taken from Bowmaker et al.

(1997), Vorobyev et al. (1998), Govardovskii et al. (2000),

Hart (2001), and Hart and Vorobyev (2005).

Chroma is defined as the strength of the color signal or

the degree of difference in stimulation among the cones,

and in the tethraedral color space it is proportional to the

Euclidean distance from the origin (i.e. the distance from

the bird gray (achromatic) point to each point specified by

3 space coordinates). Perception of hue depends upon

which cones are stimulated, and in the tetrahedral color

space this is defined by the angle that a point makes with

the origin. In birds, hue is defined by 2 angles, analogous to

latitude and longitude in geography (Endler and Mielke

2005). We calculated brightness as the summed mean

reflectance across the entire spectral range (R300–700;
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Montgomerie 2006, Galván and Møller 2009). UV chroma

was calculated as the proportion of reflectance in the UV

part of the spectrum (R300–400) in relation to the total

reflectance spectrum (R300–700; Siefferman and Hill 2005).

All of the avian families that have been investigated

show plumages that reflect significant amounts of UV light

(see Eaton and Lanyon [2003] for a review). In the

particular case of Barn Swallows, however, Safran and

McGraw (2004) reported a lack of ultraviolet reflectance

for the ventral feathers of the North American subspecies

(H. r. erythrogaster; see figure 1 in Safran and McGraw

2004). In contrast, in our population, from a different

subspecies (H. r. rustica), although the ventral plumage

showed a noisy reflectance pattern in the UV part of the

spectrum, there seemed to be some reflectance in that

range, with even some modest reflectance peaks for certain

plumage patches (Figure 2). Therefore, we decided to

include UV chroma as an additional variable in our

analyses.

After the extraction of the spectral data and the

calculation of the color variables, we ended up with 3

measurements per individual bird per variable per patch

per method (field vs. lab). The individual repeatability of

each method separately, or ‘‘within-method’’ repeatability,

was calculated for these 3 measurements. For the

assessment of the ‘‘between-method’’ repeatability, or

comparability across methods, the 3 measurements were

averaged, resulting in 2 measurements (1 for the field and

1 for the lab) per individual bird per variable per patch.

The repeatability across methods was calculated for these

2 values.

We also calculated the correlation between field and lab

measurements using the 2 averaged values. High correla-

tion values would indicate that the 2 procedures measured

color in a consistent way, regardless of whether absolute

values were the same or not for both methods.

As we conducted multiple statistical tests on data

subsets that were not likely to be biologically independent

of each other (i.e. different components of the spectra,

same metrics in different years, or same metrics in the lab

and in the field), there was an increased probability of type

I error rates. To control for this increased probability, we

corrected our P-values for multiple tests based on the

sequentially rejective Bonferroni procedure of Holm

(1979) using the ‘p.adjust’ function in the STATS package

in R (R Development Core Team 2010). All statistical

analyses were carried out using R (Crawley 2007, R

Development Core Team 2010).

FIGURE 1. The avian tetrahedral color space (from Endler and
Mielke 2005, figure 3). Permission granted by John Wiley & Sons,
Ltd. � 2005 The Linnean Society of London, Biological Journal of
the Linnean Society, 2005, 86, 405–431.

FIGURE 2. Reflectance spectra (regression lines) for belly, breast,
throat, and vent patches of (A) male and (B) female Barn
Swallows in Cornwall, UK, 2010.
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ANOVA-based Method
We calculated repeatability for color variables in the 4

patches for the different procedures according to Lessells
and Boag (1987), Senar (1999), and Quesada and Senar

(2006). The individual repeatability of each method sepa-

rately, or ‘‘within-method’’ repeatability, was computed from

the mean squares of an ANOVA on 3 repeated measures per

individual. For the ‘‘between-method’’ repeatability (i.e. the

repeatability of measurements across procedures), the

ANOVA was carried out on 2 repeated measures per

individual, 1 from the field and 1 from the lab. We repeated

this process for the 2009 and 2010 data separately.

GLMM-based Method
We used a modified version of the R function R.Anson,

which is itself a modification of the rpt.remlLMM function

(Nakagawa and Schielzeth 2010). We fitted 2 random-

effect terms (individual identity and year) in our linear

mixed-effects models, and calculated the adjusted repeat-

ability estimate as:

ri ¼ r2
a=ðr2

a þ r2
e þ r2

r Þ;

where r2
r is the year variance (and r2

a is the between-group

variance and r2
e is the within-group variance, as above). As

for the ANOVA-based method, the repeatability of each

method separately was computed for 3 repeated measures

per individual, and the repeatability of measurements

across procedures was calculated for 2 repeated measures

per individual. Because we included year as a random

effect in our models, we did not need to repeat the process
for 2009 and 2010 data separately, as we did for the

ANOVA method.

Although we also included Bonferroni-corrected signif-

icance levels for the GLMM-based repeatability calcula-

tions, we did this purely for the purpose of comparison

with the ANOVA-method calculations. However, effect

size statistics (ri, in this case), which provide us with the

magnitude of the observed effect, together with 95% CIs,

which we obtained with the R.Anson function and which

constitute a measure of the precision of said magnitude,
are an optimal, robust, and highly informative way of

presenting biological data, regardless of statistical signif-

icance, as noted in a paper (Nakagawa and Cuthill 2007)

coauthored by the original author of R.Anson himself.

RESULTS

ANOVA Analyses
In 2009, measuring plumage coloration in the lab proved
to be a repeatable method. Brightness, UV chroma,

chroma, and hue latitude and longitude were highly

repeatable for almost all of the plumage patches, returning

ri values .0.70, with the exception of hue latitude of the

breast (ri¼ 0.647, F21,44¼ 6.510, P , 0.001), hue latitude of

the throat (ri ¼ 0.418, F21,44 ¼ 3.157, P , 0.001), and hue

longitude of the throat (ri ¼ 0.625, F21,44 ¼ 6.012, P ,

0.001; Table 1).

The method of measuring plumage coloration in the

field (at 3 different points, covering a wider area of each

patch) was also quite consistent, but with overall lower

values of repeatability, although still reasonably high. All ri
values were at least 0.50, except those for brightness of the

breast (ri¼ 0.414, F20,42¼ 3.118, P¼ 0.002), hue latitude of

the breast (ri ¼ 0.382, F20,42 ¼ 2.856, P ¼ 0.002), and hue

latitude of the vent (ri ¼ 0.394, F21,44 ¼ 2.955, P ¼ 0.001;

Table 1).

The repeatability values across the field and laboratory

procedures were very low for all of the plumage patches

measured (ri , 0.35 and P . 0.05 in all cases), suggesting a

lack of consistency across the 2 assessment methods for

melanin-based plumage coloration (Table 1).

In 2010, repeatability measurements in the field (taken

at approximately the same point within each patch) yielded

considerably higher results than those from 2009, with all

ri values above 0.60, except those of hue latitude of the

throat (ri ¼ 0.515, F37,75 ¼ 4.186, P , 0.001). Most of the

remaining values ranged from 0.74 to 0.91, except for

brightness of the breast (ri ¼ 0.611, F37,76 ¼ 5.710, P ,

0.001), hue latitude of the belly (ri¼ 0.630, F37,76¼ 6.100, P

, 0.001), hue latitude of the vent (ri¼ 0.629, F37,76¼ 6.088,

P , 0.001), and hue longitude of the vent (ri¼ 0.679, F37,76
¼ 7.356, P , 0.001; Table 2).

In the lab, all repeatability values from 2010 were higher

than 0.71, except that of hue latitude of the throat (ri ¼
0.650, F37,76 ¼ 6.569, P , 0.001). Repeatability was higher

overall than when taking measurements on live birds,

except for UV chroma of the belly (ri ¼ 0.857, F37,76 ¼
18.986, P , 0.001), breast (ri¼ 0.788, F37,76¼ 12.117, P ,

0.001), and vent (ri¼0.819, F37,76¼14.571, P , 0.001), and

hue latitude of the breast (ri ¼ 0.722, F37,76 ¼ 8.808, P ,

0.001), where it was just slightly lower. Repeatability values

in the lab were similar to the results obtained in 2009, but

visibly higher for measurements taken in the field (except

for throat patch; Table 2).

Repeatabilities across field and lab methods in 2010

were quite heterogeneous: high for hue longitude of the

belly (ri¼ 0.794, F37,38¼ 8.732, P , 0.001) and breast (ri¼
0.657, F37,38 ¼ 4.818, P , 0.001); moderate for vent hue

latitude (ri¼ 0.463, F37,38¼ 2.723, P¼ 0.005) and longitude

(ri¼ 0.561, F37,38¼ 3.553, P , 0.001), belly hue latitude (ri
¼ 0.431, F37,38¼ 2.515, P¼ 0.011), and breast brightness (ri
¼ 0.482, F37,38 ¼ 2.861, P ¼ 0.003); and low for breast

chroma (ri ¼ 0.326, F37,38 ¼ 1.966, P ¼ 0.062), throat UV

chroma (ri ¼ 0.321, F37,38 ¼ 1.944, P ¼ 0.112), and vent

brightness (ri ¼ 0.349, F37,38 ¼ 2.070, P ¼ 0.042). For the

rest of the coloration measurements, repeatabilities were

very low (ri , 0.30 and P . 0.05 in all cases; Table 2).
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GLMM Analyses

When considering adjusted repeatability for both sampling

years using the GLMM method, ri values in the field were

moderate overall, with all of them .0.50 except those of

chroma of the throat (ri ¼ 0.457, 95% CI ¼ 0.152–0.849),

hue latitude of the throat (ri ¼ 0.444, 95% CI ¼ 0.232–

0.627), and hue latitude of the vent (ri ¼ 0.446, 95% CI ¼

0.248–0.612). The rest of the ri values in general ranged

between 0.512 and 0.669, with moderately broad 95% CIs.

Only 3 values were above 0.70 and had quite narrow 95%

CIs: hue longitude of the belly (ri¼ 0.858, 95% CI¼ 0.768–

0.905), hue longitude of the breast (ri ¼ 0.840, 95% CI ¼
0.744–0.890), and hue longitude of the throat (ri ¼ 0.776,

95% CI¼ 0.550–0.885; Table 3).

TABLE 2. ANOVA-derived repeatabilities for 2010 plumage coloration measurements taken from live Barn Swallows in the field (in
Cornwall, UK), from feather samples in the lab, and across both procedures.

Belly Breast Throat Vent

F ri F ri F ri F ri

Repeatability, field
Brightness 16.422 0.837*** 5.710 0.611*** 17.398 0.846*** 14.534 0.819***
UV chroma 25.333 0.890*** 15.853 0.832*** 12.357 0.791*** 16.829 0.841***
Chroma 24.037 0.885*** 14.749 0.821*** 22.212 0.876*** 12.377 0.792***
Hue latitude 6.100 0.630*** 9.741 0.744*** 4.186 0.515*** 6.088 0.629***
Hue longitude 23.669 0.883*** 31.363 0.910*** 9.891 0.748*** 7.356 0.679***

Repeatability, lab
Brightness 55.197 0.947*** 31.387 0.910*** 30.900 0.909*** 44.036 0.934***
UV chroma 18.986 0.857*** 12.117 0.788*** 17.544 0.847*** 14.571 0.819***
Chroma 25.375 0.890*** 25.936 0.893*** 27.679 0.899*** 39.854 0.928***
Hue latitude 8.391 0.711*** 8.808 0.722*** 6.569 0.650*** 9.142 0.731***
Hue longitude 37.357 0.924*** 31.683 0.911*** 11.664 0.781*** 37.517 0.924***

Comparison, field–lab
Brightness 1.304 0.132 2.861 0.482** 0.764 –0.134 2.070 0.349*
UV chroma 0.557 –0.284 1.059 0.029 1.944 0.321 1.587 0.227
Chroma 0.906 –0.049 1.966 0.326 § 1.755 0.274 1.579 0.224
Hue latitude 2.515 0.431* 1.248 0.110 0.784 –0.121 2.723 0.463**
Hue longitude 8.732 0.794*** 4.818 0.657*** 0.973 –0.014 3.553 0.561***

*** P , 0.001; ** P , 0.01; * P , 0.05; § P , 0.1.

TABLE 1. ANOVA-derived repeatabilities for 2009 plumage coloration measurements taken from live Barn Swallows in the field (in
Cornwall, UK), from feather samples in the lab, and across both procedures.

Belly Breast Throat Vent

F ri F ri F ri F ri

Repeatability, field
Brightness 6.045 0.627*** 3.118 0.414** 12.273 0.790*** 6.187 0.634***
UV chroma 10.203 0.754*** 14.171 0.814*** 13.861 0.811*** 5.320 0.590***
Chroma 9.016 0.728*** 11.238 0.773*** 10.714 0.764*** 4.561 0.543***
Hue latitude 4.092 0.508*** 2.856 0.382** 4.415 0.532*** 2.955 0.394**
Hue longitude 13.025 0.800*** 9.142 0.731*** 24.348 0.886*** 4.677 0.550***

Repeatability, lab
Brightness 13.188 0.802*** 14.777 0.821*** 8.209 0.706*** 20.212 0.865***
UV chroma 46.493 0.938*** 23.015 0.880*** 34.895 0.919*** 25.561 0.892***
Chroma 42.489 0.932*** 26.975 0.896*** 62.481 0.954*** 29.052 0.903***
Hue latitude 11.986 0.785*** 6.510 0.647*** 3.157 0.418*** 23.024 0.880***
Hue longitude 25.986 0.893*** 9.283 0.734*** 6.012 0.625*** 27.291 0.898***

Comparison, field–lab
Brightness 1.464 0.188 2.070 0.349 0.865 –0.072 1.804 0.287
UV chroma 1.315 0.136 1.359 0.152 0.750 –0.143 0.901 –0.052
Chroma 0.327 –0.507 1.372 0.157 1.014 0.007 0.138 –0.758
Hue latitude 0.908 –0.048 0.864 –0.073 1.252 0.112 0.706 –0.172
Hue longitude 1.736 0.269 1.751 0.273 0.671 –0.197 1.106 0.050

*** P , 0.001; ** P , 0.01.
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Adjusted repeatability values obtained in the lab were

considerably higher than those achieved in the field. All lab

ri values were .0.60, except for hue latitude of the throat

(ri ¼ 0.544, 95% CI ¼ 0.375–0.662), hue longitude of the

throat (ri¼ 0.472, 95% CI¼ 0.189–0.769), and hue latitude

of the vent (ri ¼ 0.414, 95% CI ¼ 0.142–0.768). Of the

remaining ri values, most ranged from 0.602 to 0.898, with

chroma of the throat (ri ¼ 0.926, 95% CI ¼ 0.872–0.950)

and chroma of the vent (ri¼ 0.911, 95% CI¼ 0.849–0.940)

even exceeding 0.90 and with extremely narrow 95% CIs

(Table 3).

The comparison between coloration measurements

obtained in the field and in the lab yielded highly

heterogeneous results: moderate to high repeatability

values for hue longitude of the belly (ri ¼ 0.656, 95% CI

¼ 0.469–0.778) and the breast (ri¼ 0.501, 95% CI¼ 0.270–

0.697); low to moderate values for brightness of the breast

(ri ¼ 0.441, 95% CI ¼ 0.216–0.628); and low values for

brightness of the vent (ri ¼ 0.311, 95% CI ¼ 0.063–0.511)

and hue longitude of the vent (ri¼ 0.316, 95% CI¼ 0.109–

0.553). The rest of the ri values were very low (,0.25; Table

3).

Correlation Analyses

Correlations between coloration values obtained in the

field and in the lab followed very similar patterns as

repeatabilities across both methods. In 2009, correlation

coefficients were low to very low and nonsignificant in all

cases.

In 2010, the correlation between field and lab measure-

ments was high for hue latitude (qx,y¼ 0.678, t36¼ 5.539, P

, 0.001) and hue longitude of the belly (qx,y¼ 0.840, t36¼
9.273, P , 0.001), and for hue longitude of the breast (qx,y

¼ 0.766, t36¼ 7.148, P , 0.001); moderate for brightness of

the breast (qx,y¼ 0.473, t36¼ 3.219, P¼ 0.005), UV chroma

of the throat (qx,y ¼ 0.412, t36 ¼ 2.715, P ¼ 0.025), hue

latitude (qx,y ¼ 0.497, t36 ¼ 3.439, P ¼ 0.003) and hue

longitude of the vent (qx,y¼ 0.593, t36¼ 4.424, P , 0.001);

and low (,0.36) in all other cases (Table 4).

When including both years in the analyses, correlation

coefficients were very similar to the ones from 2010, with

only slightly lower absolute values, and significance levels

were also very close, with the exception of UV chroma of

the throat (qx,y ¼ 0.237, t58 ¼ 1.861, P ¼ 0.161) and hue

latitude of the vent (qx,y¼ 0.218, t58¼ 1.703, P¼ 0.094), for

which correlation coefficients were considerably lower

than in 2010 and nonsignificant (Table 4).

DISCUSSION

Measuring Plumage Ornamentation to Gain

Repeatable and Reliable Measures

Color measurements in the field and in the lab were in

general moderately to highly repeatable for all of the

variables and plumage patches that we examined in 2009,

in 2010, and when applying the GLMM-based method for

both years combined, with just some occasional excep-

tions. Repeatability for field measurements was visibly

TABLE 3. GLMM-derived repeatabilities for years 2009 and 2010 combined for plumage coloration measurements taken from live
Barn Swallows in the field (in Cornwall, UK), from feather samples in the lab, and across both procedures.

Belly Breast Throat Vent

ri 95% CL ri 95% CL ri 95% CL ri 95% CL

Repeatability, field
Brightness 0.591*** [0.289, 0.813] 0.512*** [0.319, 0.664] 0.664*** [0.382, 0.834] 0.669*** [0.440, 0.806]
UV chroma 0.518*** [0.194, 0.891] 0.647*** [0.319, 0.869] 0.593*** [0.263, 0.847] 0.640*** [0.353, 0.817]
Chroma 0.528*** [0.194, 0.878] 0.624*** [0.310, 0.851] 0.457*** [0.152, 0.849] 0.551*** [0.265, 0.773]
Hue latitude 0.548*** [0.367, 0.686] 0.632*** [0.471, 0.740] 0.444*** [0.232, 0.627] 0.446*** [0.248, 0.612]
Hue longitude 0.858*** [0.768, 0.905] 0.840*** [0.744, 0.890] 0.776*** [0.550, 0.885] 0.602*** [0.421, 0.728]

Repeatability, lab
Brightness 0.677*** [0.341, 0.907] 0.853*** [0.710, 0.913] 0.829*** [0.729, 0.882] 0.853*** [0.665, 0.929]
UV chroma 0.882*** [0.797, 0.921] 0.818*** [0.694, 0.883] 0.668*** [0.331, 0.895] 0.744*** [0.458, 0.885]
Chroma 0.897*** [0.795, 0.939] 0.898*** [0.830, 0.931] 0.926*** [0.872, 0.950] 0.911*** [0.849, 0.940]
Hue latitude 0.748*** [0.617, 0.824] 0.641*** [0.440, 0.766] 0.544*** [0.375, 0.662] 0.414*** [0.142, 0.768]
Hue longitude 0.896*** [0.807, 0.934] 0.631*** [0.282, 0.892] 0.472*** [0.189, 0.769] 0.602*** [0.248, 0.911]

Comparison, field–lab
Brightness 0.114 [0.000, 0.347] 0.441*** [0.216, 0.628] 0.000 [0.000, 0.240] 0.311* [0.063, 0.511]
UV chroma 0.000 [0.000, 0.238] 0.085 [0.000, 0.320] 0.057 [0.000, 0.294] 0.140 [0.000, 0.364]
Chroma 0.039 [0.000, 0.273] 0.249* [0.023, 0.470] 0.150 [0.000, 0.374] 0.213 [0.000, 0.430]
Hue latitude 0.180 [0.000, 0.408] 0.083 [0.000, 0.314] 0.000 [0.000, 0.233] 0.104 [0.000, 0.328]
Hue longitude 0.656*** [0.469, 0.778] 0.501*** [0.270, 0.697] 0.000 [0.000, 0.238] 0.316** [0.109, 0.553]

*** P , 0.001; ** P , 0.01; * P , 0.05.
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lower in 2009, whereas lab measurements were similarly

repeatable in both years.

Comparability across both measuring methods, howev-

er, was highly heterogeneous and poor overall, with

extremely low and nonsignificant ri values in 2009. Some

of the values were �0.5 and statistically significant in 2010,

but, as in 2009, were also mostly low and nonsignificant.

We can partly explain the higher repeatability of 2010

field measurements and the higher frequency of large and

significant repeatability values in the comparison between

field and lab methods in 2010 by the different methodol-

ogy that we followed in field data collection between years,

as explained above. However, the fact that most of the

repeatability values for field–lab comparisons in 2010 were

still very low indicates that there must be additional and

more influential factors to explain these findings. Our

results stand in marked contrast to the positive results of

Quesada and Senar (2006), who compared the repeatabil-

ities between both coloration assessment procedures for

carotenoid-based plumage. There may be several reasons

for this difference. For example, due to the different

characteristics of the 2 types of pigment, carotenoid-

derived coloration is more variable among individuals than

melanin-based coloration (Badyaev and Hill 2000), and the

repeatability of a character increases with between-

individual (between-group) variability (Senar 1999). In

order to increase the repeatability of some measurements,

a possible solution could be to increase the number of

measurements, for example from 3 to 5, as has already

been done by several authors (Bennett et al. 1997, Perrier

et al. 2002, Doucet and Hill 2009). However, when working

with live birds in the field, by doing this we would increase

manipulation times and, consequently, we might increase

stress levels to what we would consider an unacceptable

degree according to our experience with Barn Swallows.

However, this solution could be applied when assessing

coloration using feather samples in the lab.

The comparability across methods was especially low for

measurements taken from the throat, even when feathers

were collected from the same approximate point where

field measurements were made (in 2010) or when

considering the adjusted repeatability for both years. A

potential explanation for this is that the throat patch is

smaller and much darker than other plumage patches. The

feathers of the throat patch are also considerably smaller.

Therefore, it is often quite difficult to obtain a reliable

reflectance measurement with such a limited number of

photons reaching the spectrophotometer probe. Also, it is

more difficult to create a ‘‘plumage patch’’ in the lab with a

feather arrangement similar to that of a live bird and big

enough to apply a spectrophotometer probe to.

The fact that the correlation coefficients between field

and lab measurements followed a pattern closely related to

the repeatability values across both procedures suggests

that, in broad terms, both sampling methods neither

yielded close and comparable absolute values for color

measurements, nor did they even measure color in a

consistent way. Thus, according to our evidence, collecting

feathers from birds and quantifying their coloration in the

lab does not accurately or reliably reflect the true color of

TABLE 4. Correlation values between field and lab measurements of plumage coloration of Barn Swallows in Cornwall, UK, in 2009,
in 2010, and for both years simultaneously.

Belly Breast Throat Vent

t qx,y t qx,y t qx,y t qx,y

Correlation, field–lab (2009)
Brightness 0.728 0.165 1.561 0.337 0.818 0.180 1.235 0.266
UV chroma 0.570 0.130 0.602 0.137 1.207 0.261 0.453 0.101
Chroma 1.076 0.240 0.633 0.144 0.444 0.099 1.467 0.312
Hue latitude 0.123 0.028 0.753 0.170 0.533 0.118 –0.870 –0.191
Hue longitude 1.128 0.251 1.907 0.401 –0.103 –0.023 0.121 0.027

Correlation, field–lab (2010)
Brightness 0.738 0.122 3.219 0.473** 1.803 0.288 2.273 0.354*
UV chroma –1.854 –0.295 0.173 0.029 2.715 0.412* 1.419 0.230
Chroma –0.322 –0.054 1.999 0.316 § 2.228 0.348 § 1.432 0.232
Hue latitude 5.539 0.678*** 1.947 0.309 § 0.271 0.045 3.439 0.497**
Hue longitude 9.273 0.840*** 7.148 0.766*** 1.243 0.203 4.424 0.593***

Correlation, field–lab (both years)
Brightness 1.003 0.132 3.847 0.454*** 1.885 0.240 2.592 0.322*
UV chroma –1.211 –0.158 0.697 0.092 1.861 0.237 1.234 0.160
Chroma 0.429 0.057 2.481 0.312* 1.645 0.211 2.008 0.255 §

Hue latitude 3.771 0.447*** 2.513 0.316* 0.374 0.049 1.703 0.218 §

Hue longitude 7.302 0.695*** 7.277 0.694*** 0.350 0.046 3.936 0.459**

*** P , 0.001; ** P , 0.01; * P , 0.05; § P , 0.1.
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the plumage patches that can be perceived in the wild and

from which the feathers were collected, at least for

plumages with melanin-based pigmentation. This stands

in contrast to the results obtained by Quesada and Senar

(2006) for carotenoid-based plumages. Thus, we do not

recommend measuring coloration in the lab for consistent,

reliable, and objective feather color assessment. On the

contrary, we recommend carrying the spectrophotometer

into the field, as we believe that the reliability of the color

measurements taken on live birds clearly outweighs the

related inconveniences.

Assessing Repeatability
The GLMM-based method (Nakagawa and Schielzeth

2010), applied to data from both years combined, allowed

us to control for year effects by adding the year variance

into the total variance calculation, so that we could obtain

the adjusted repeatability for data from both years. In

addition, use of the GLMM-based method meant that we

could calculate 95% CIs, useful indicators of the reliability

and precision of our repeatability estimates, which,

together with the effect size statistic itself (ri), provided

us with a robust and highly informative way of presenting

the repeatability data independent of the statistical

significance level (Nakagawa and Cuthill 2007). Further,

and despite the lack of a need for P-values, the possibility

of calculating adjusted repeatabilities by including, in our

case, year as a random effect considerably reduced the

number of tests necessary for repeatability calculation.
Similarly, any other possible random factor potentially

having an effect on the repeatability of measurements can

be included in analyses, thereby greatly reducing the

number of statistical tests required. Thus, the P-values

obtained with this method are less affected by problems

derived from multiple testing than those obtained with the

ANOVA-based method, reducing the probability of type I

errors and increasing the power of this repeatability-

calculation method.

Although, with some infrequent exceptions, the

absolute values of repeatability were higher overall for

lab than for field measurements within years when using

the ANOVA approach, and also when considering data

from both years simultaneously when using the GLMM-

based procedure, this does not necessarily mean that

color measurements taken in the lab are more unbiased

and accurate. It simply indicates that collecting feathers

captures just a portion of the total variation of the

plumage patch from which they were collected. Color

across collected feathers is, by definition, more homoge-

neous than that in the true patch. Even if feathers are

collected from exactly the same point at which the field

measurements are taken, as we tried to do in 2010, the

subsequent stacking of the feathers 1 by 1 for measure-

ment in the lab may alter their original arrangement and

cause a reduction in the comparability across methods.

Likewise, the number of feathers that are stacked for lab

measurements, which we failed to control, is a crucial

variable with a potentially dramatic effect on results. We

still think, however, that the unique characteristics of

melanin-based pigmentation make the plumage color of

Barn Swallows especially complicated to quantify in a

reliable manner and have a detrimental effect on

repeatability. Regardless, for future work on this topic,

we strongly suggest that special care is taken to control

the following 2 aspects of paramount importance:

collecting feathers from the same point at which direct

measurements in the field are taken as exactly as possible,

and controlling for the number of feathers stacked for lab

measurements. By doing this, we predict that there can be

an increase in the comparability across field and lab color

quantification procedures. We believe that finding out to

what degree this increases comparability is a promising

and exciting question to investigate, and may give us

much information about the convenience of using the lab

procedure for color quantification in melanin-based

plumage, given that in view of the available data so far

we cannot recommend its use.

Conclusions
The results of our study suggest that, in species with

melanin-based plumage coloration, the procedure of

collecting feathers from a bird, stacking them on a flat

surface in the lab while trying to mimic the original

plumage arrangement, and quantifying their coloration

with a spectrophotometer does not reliably reflect the real

or true color of the bird’s plumage in the field. Therefore,

we recommend quantifying coloration directly in the field

by carrying the spectrophotometer to the site for accurate,

reliable, and realistic color assessment.

Likewise, we advocate the use of the GLMM-based

statistical method for repeatability calculations, as it

allows for the inclusion of random factors in models.

Consequently, adjusted, highly realistic repeatabilities can

be calculated. Also, the number of statistical tests

necessary for repeatability calculation is reduced, increas-

ing power. Finally, this method allows the easy compu-

tation of 95% CIs, a measure of the reliability and

precision of effect size calculations. In sum, the GLMM-

based method constitutes a realistic, robust, highly

informative, reliable, and accurate way of calculating

repeatability and presenting data, and we recommend its

generalized use, instead of use of the more popular and

common methods employed to date.
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Ruiz-de-Castañeda, J. Rivero-de Aguilar, J. Martı́nez, J.
Morales, G. Tomás, and J. Moreno (2010). Carotenoid-based
plumage colouration is associated with blood parasite
richness and stress protein levels in Blue Tits (Cyanistes
caeruleus). Oecologia 162:825–835.

Donner, A. (1986). A review of inference procedures for the
intraclass correlation coefficient in the one-way random
effects model. International Statistical Review/Revue Inter-
nationale de Statistique 54:67–82.

Doucet, S. M., and G. E. Hill (2009). Do museum specimens
accurately represent wild birds? A case study of carotenoid,
melanin, and structural colours in Long-tailed Manakins
Chiroxiphia linearis. Journal of Avian Biology 40:146–156.

Eaton, M. D., and S. M. Lanyon (2003). The ubiquity of avian
ultraviolet plumage reflectance. Proceedings of the Royal
Society of London, Series B 270:1721–1726.

Endler, J. A., and P. W. Mielke (2005). Comparing entire color
patterns as birds see them. Biological Journal of the Linnean
Society 86:405–431.

Figuerola, J., J. C. Senar, and J. Pascual (1999). The use of a
colorimeter in field studies of Blue Tit Parus caeruleus
coloration. Ardea 87:269–275.

Forshaw, J. M. (1973). Parrots of the World. Lansdowne Press,
Willoughby, NSW, Australia.

Galván, I., and A. P. Møller (2009). Different roles of natural and
sexual selection on senescence of plumage color in the Barn
Swallow. Functional Ecology 23:302–309.

Garamszegi, L. Z., G. Hegyi, D. Heylen, P. Ninni, F. de Lope, M.
Eens, and A. P. Møller (2006). The design of complex sexual
traits in male Barn Swallows: Associations between signal
attributes. Journal of Evolutionary Biology 19:2052–2066.

Govardovskii, V. I., N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K.
Donner (2000). In search of the visual pigment template.
Visual Neuroscience 17:509–528.

The Auk: Ornithological Advances 133:325–337, Q 2016 American Ornithologists’ Union

I. Vaquero-Alba, A. McGowan, D. Pincheira-Donoso, et al. Color quantification in melanin-based plumage 335

dx.doi.org/10.1186/1742-9994-1-2


Hart, N. S. (2001). The visual ecology of avian photoreceptors.
Progress in Retinal and Eye Research 20:675–703.

Hart, N. S., and M. Vorobyev (2005). Modelling oil droplet
absorption spectra and spectral sensitivities of bird cone
photoreceptors. Journal of Comparative Physiology A 191:
381–392.

Herrera, G., J. C. Zagal, M. Diaz, M. J. Fernández, A. Vielma, M.
Cure, J. Martinez, F. Bozinovic, and A. G. Palacios (2008).
Spectral sensitivities of photoreceptors and their role in color
discrimination in the Green-backed Firecrown Hummingbird
(Sephanoides sephaniodes). Journal of Comparative Physiolo-
gy A 194:785–794.

Hill, G. E. (2006). Female mate choice for ornamental coloration.
In Bird Coloration, volume II: Function and Evolution (G. E. Hill
and K. J. McGraw, Editors). Harvard University Press, Cam-
bridge, MA, USA. pp. 2137–2200.

Hill, G. E., and K. J. McGraw (Editors) (2006). Bird Coloration,
volume I: Mechanisms and Measurements. Harvard University
Press, Cambridge, MA, USA.

Holm, S. (1979). A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics 6:65–70.

Kelber, A., M. Vorobyev, and D. Osorio (2003). Animal color
vision—Behavioural tests and physiological concepts. Bio-
logical Reviews 78:81–118.

Keyser, A. J., and G. E. Hill (2000). Structurally based plumage
coloration is an honest signal of quality in male Blue
Grosbeaks. Behavioral Ecology 11:202–209.

Komdeur, J., M. Oorebeek, T. van Overveld, and I. C. Cuthill
(2005). Mutual ornamentation, age, and reproductive perfor-
mance in the European Starling. Behavioral Ecology 16:805–
817.

Lessells, C. M., and P. T. Boag (1987). Unrepeatable repeatabil-
ities: A common mistake. The Auk 104:116–121.

McGraw, K. J., R. J. Safran, M. R. Evans, and K. Wakamatsu (2004).
European Barn Swallows use melanin pigments to color their
feathers brown. Behavioral Ecology 15:889–891.

McGraw, K. J., R. J. Safran, and K. Wakamatsu (2005). How feather
color reflects its melanin content. Functional Ecology 19:816–
821.

Meadows, M. G., N. I. Morehouse, R. L. Rutowski, J. M. Douglas,
and K. J. McGraw (2011). Quantifying iridescent coloration in
animals: A method for improving repeatability. Behavioral
Ecology and Sociobiology 65:1317–1327.

Montgomerie, R. (2006). Analyzing colors. In Bird Coloration,
volume I: Mechanisms and Measurements (G. E. Hill and K. J.
McGraw, Editors). Harvard University Press, Cambridge, MA,
USA. pp. 90–147.

Moore, B. A., P. Baumhardt, M. Doppler, J. Randolet, B. F.
Blackwell, T. L. DeVault, E. R. Loew, and E. Fernández-Juricic

(2012). Oblique color vision in an open-habitat bird:
Spectral sensitivity, photoreceptor distribution and behav-
ioral implications. Journal of Experimental Biology 215:
3442–3452.

Nakagawa, S., and I. C. Cuthill (2007). Effect size, confidence
interval and statistical significance: A practical guide for
biologists. Biological Reviews 82:591–605.

Nakagawa, S., and H. Schielzeth (2010). Repeatability for
Gaussian and non-Gaussian data: A practical guide for
biologists. Biological Reviews 85:935–956.

Perrier, C., F. de Lope, A. P. Møller, and P. Ninni (2002). Structural
coloration and sexual selection in the Barn Swallow Hirundo
rustica. Behavioral Ecology 13:728–736.

Pomiankowski, A. (1987). Sexual selection: The handicap
principle does work – sometimes. Proceedings of the Royal
Society of London, Series B 231:123–145.

Quesada, J., and J. C. Senar (2006). Comparing plumage color
measurements obtained directly from live birds and from
collected feathers: The case of the Great Tit Parus major.
Journal of Avian Biology 37:609–616.

R Development Core Team (2010). R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Safran, R. J. (2007). Settlement patterns of female Barn Swallows
Hirundo rustica across different group sizes: Access to colorful
males or favored nests? Behavioral Ecology and Sociobiology
61:1359–1368.

Safran, R. J., and K. J. McGraw (2004). Plumage coloration, not
length or symmetry of tail-streamers, is a sexually selected
trait in North American Barn Swallows. Behavioral Ecology 15:
455–461.

Senar, J. (1999). La medición de la repetibilidad y el error de
medida. EtoloGuı́a 17:53–64.

Senar, J. C., J. Figuerola, and J. Pascual (2002). Brighter yellow
Blue Tits make better parents. Proceedings of the Royal
Society of London, Series B 269:257–261.

Siefferman, L., and G. E. Hill (2005). Evidence for sexual selection
on structural plumage coloration in female Eastern Bluebirds
(Sialia sialis). Evolution 59:1819–1828.

Sokal, R. R., and F. J. Rohlf (1995). Biometry: The Principles and
Practice of Statistics in Biological Research. W. H. Freeman,
New York, NY, USA.

Vaquero-Alba, I. (2011). Animal sexual signals: Do they maximise
or optimise information content? Ph.D. dissertation, Univer-
sity of Exeter, Penryn, UK.

Vorobyev, M., D. Osorio, A. T. D. Bennett, N. J. Marshall, and I. C.
Cuthill (1998). Tetrachromacy, oil droplets and bird
plumage colours. Journal of Comparative Physiology A
183:621–633.

The Auk: Ornithological Advances 133:325–337, Q 2016 American Ornithologists’ Union

336 Color quantification in melanin-based plumage I. Vaquero-Alba, A. McGowan, D. Pincheira-Donoso, et al.



Appendix Table 5. Specific locations of the study sites (GPS coordinates) in Cornwall, UK, where we took plumage coloration
measurements of Barn Swallows in the field and collected feather samples for subsequent coloration measurements in the lab,
assessment of repeatability of measurements, and comparability between field and lab measurements.

Site Latitude Longitude

Boskensoe Farm 508070080 0N 058060540 0W
Treworval Farm 508070160 0N 058080020 0W
Stithians Reservoir 508100050 0N 058120090 0W
Gwen Chapel 508100230 0N 058120450 0W
Halabezack Farm 508000250 0N 058130000 0W
Upper Menherion Farm 508110190 0N 058130300 0W
Crowgey 508120080 0N 058110500 0W
Higher Trevethan 508130340 0N 058110290 0W
Dougie Grahams 508100320 0N 058060240 0W
Porloe Farm 508100290 0N 058030340 0W
Little Tregew 508100450 0N 058040310 0W
Lower Treluswell Farm 508110000 0N 058060560 0W
Dowstall Farm 508110330 0N 058040590 0W
Pellynwartha Farm 508120160 0N 058080190 0W
Restronguet Barton Farm 1 508110150 0N 058030470 0W
Restronguet Barton Farm 2 508110260 0N 058040030 0W
University of Exeter Cornwall Campus 508100150 0N 058070270 0W
Tremough Farm 508100060 0N 058070310 0W
Rosehill Farm 508100590 0N 058040430 0W
Girl Guides Camp, St Clements 508150270 0N 058000500 0W
Polquick Farm 508160240 0N 058030070 0W
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